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Abstract

Using an effect-barrier height method, we study the properties of the localized electronic states in an N-layer-based

superlattice with structural defects within the framework of effective-mass theory. The coupling effect between normal

and lateral degrees of freedom of an electron on the localized electronic states in both symmetric and asymmetric triple

layer superlattices with structural defects has been considered numerically. The results show that the localized states

display different behaviors in both symmetric and asymmetric structures in spite of the minibands being not influenced

by the structural symmetry. Moreover, the coupling effect causes the minibands, minigaps and localized electron levels

to depend on the transverse wave number kxy. A brief physical analysis is given.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, superlattices (SLs) in the presence
of inhomogeneities such as surface, interface or
e front matter r 2005 Elsevier B.V. All rights reserve
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defect layer have attracted much attention due to
novel physical properties found in this type of
structure in comparison with ideal SLs. It is known
that the introduction of the defect layer in SLs can
lead to the localization of electronic states [1–11],
acoustic modes [12–17], optical modes [18–20] and
interface plasmon modes [21,22] in the vicinity of
the defects. As far as electronic states in this type of
structure are concerned, deviation of the structure
from strict periodicity should result in the creation
d.
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of localized states within the minigaps. The proper-
ties of localized electronic states in a semi-infinite
SL [1,3–6,8,9] and infinite SL with structural defects
[2,7,10,11] have been reported. However, many
previous works based on the effective-mass para-
bolic conduction-band model paid little attention to
the coupling effect between normal and lateral
degrees of freedom of an electron and assumed that
the energy of an electron may be separated into
longitudinal and transverse components in the
whole structure, irrespective of the effective mass
mismatches in different constituent layers. Some
studies have shown that the mismatch of electron
effective mass in different constituent layers can
lead to significant dependence of the electron levels
on the transverse wave number kxy in quantum
wells and SLs [23–25].
Recently, Chen et al. studied the localized

electronic states in a binary SL with a structural
defect layer and showed that miniband, minigap
and localized levels are obviously dependent on the
transverse wave vector kxy in an infinite binary SL
with a structural defect layer [26]. More recently,
Huang et al. investigated the surface electronic
states in a semi-infinite SL with a cap layer [27].
The results also stated that the coupling effect
should be considered when the difference of the
electron effective mass between well and barrier
materials cannot be neglected.
The present work extends these studies to a

general infinite N-layer-based SL with structural
defects. We derive general formulae for calculating
localized and extended electronic states in such a
system by using the transfer-matrix method. In
comparison, the localized electronic states in both
symmetric and asymmetric SL structures with the
structural defects are discussed.
In the next section, a brief description of the

theoretical framework of our calculation is pre-
sented. The numerical results will be introduced in
Section 3 with analyses, and a brief summarization
will form the last section.
Fig. 1. (a) Symmetric structure: schematic diagram of two

semi-infinite SLs with an embedded structural defect d. (b)

asymmetric structure: schematic diagram of an infinite SL with

structural defect d inserting into a cell. Ua1;Ua2; . . . ; and UaN

represent the potential barrier heights of the corresponding

constituent an layer in one cell, respectively. Ud denotes the

conduction band edge of the defect layer.
2. Model and formalism

We consider two typical samples of the SLs with
structural defects: (i) symmetric structure, in which a
defect region labelled as d is embedded between two
semi-infinite SLs, each of them is formed by an
infinite repetition of a unit cell containing N

different slabs with thicknesses Lan, potential heights
Uan and effective masses man ðn ¼ 1; 2; . . . ;NÞ, and
the defect region is composed of s slabs with
thicknesses Ldk, potential heights Udk and effective
massesmdk ðk ¼ 1; 2; . . . ; sÞ, as depicted in Fig. 1(a);
(ii) asymmetric structure, formed by inserting a
defect region consisted of s slabs into an infinite SL,
depicted in Fig. 1(b). The period of the SL is
L ¼ La1 þ La2 þ � � � þ LaN . We choose the growth
direction of the SLs as the z axis and the center of
the structural defects as the coordinate origin.
Within the envelope function effective-mass

approximation, the electron 1D Schrödinger equa-
tion satisfied by the longitudinal envelope-wave
function fðzÞ is described by

�
_2

2

d

dz

1

mðzÞ

d

dz
fðzÞ þ UðzÞfðzÞ

¼ E �
_2k2xy

2mðzÞ

" #
fðzÞ, ð1Þ
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where kxy is the transverse wave number, and UðzÞ

and mðzÞ are the position-dependent potential and
the effective mass, respectively. From Eq. (1), we
have Ei

z ¼ E � Ei
xy representing the longitudinal

energies of the electron in the ith layer, where
Ei

xy ¼ _2k2xy=2mi is the transverse kinetic energies
in the ith layer. Taking into account the difference
of the effective mass of the electron in different
layers in a cell, i.e. miamj, both the transverse
kinetic energy and longitudinal energy compo-
nents of the electron no longer keep their
conservation individually. We introduce an effec-
tive barrier height UaiðkxyÞ ða ¼ a; d; i ¼ n;kÞ of
the ith layer [26,27]:

UaiðkxyÞ ¼ Uai � 1�
mat

mai

� �
_2k2xy

2mat

, (2)

where Uai is the potential of the ith layer. Without
any loss of generality, we assume that the potential
of the tth layer in a cell is zero.
Eq. (1) can then be rewritten as

�
_2

2

d

dz

1

mðzÞ

d

dz
fðzÞ þ U eff ðzÞfðzÞ ¼ EzfðzÞ, (3)

where Ez � Et
z ¼ E � ð_2k2xy=2matÞ, and the effec-

tive potential U eff ðzÞ is defined as follows:

U eff ðzÞ ¼
0 in the tth layer;

UaiðkxyÞ in the ith layer:

(
(4)

From Eq. (4), it is evident that the longitudinal
component of the motion of the electron is
dependent on the transverse wave vector kxy when
taking into account the difference of the effective
mass of the electron in the different layers.
The above equations are applied to investigate

localized electron levels in the structures as
shown in Fig. 1. At the nth layer in a cell, the
longitudinal envelope-wave function can be
written as

fðn; n; zÞ ¼ ½Aane
ikanðz�zn

anÞ þ Bane
�ikanðz�zn

anÞ	eiqzðn�1ÞL.

(5)

In the defect region,

fðd;k; zÞ ¼ Adke
ikdkðz�zdkÞ þ Bdke

�ikdkðz�zdkÞ, (6)

where zdk represents the center coordinate of the
kth slab in the defect region, zn

an is the center
coordinate of the nth layer in the nth ðn ¼

1; 2; . . . ;NÞ period of the SL, L is the period of
the SL, and the longitudinal wave number of the
electron kai in the ith layer is given by

kai ¼
2maiðEz � U eff Þ

_2

� �1=2
. (7)

For localized electronic states lying within mini-
gaps, the Bloch wave number qz should take
complex values in the form of

qz ¼
np
L

þ iq ðqX0; n ¼ 0; 1; 2; . . .Þ, (8)

where n denotes the index of minigaps. It should
be noted that the imaginary Bloch wave number q

(decay factor) describes the localization degree of
the localized modes in the vicinity of the defect
layer.
Bastard’s boundary conditions applied to the SL

interfaces—fðzÞ and f0
ðzÞ=mðzÞ—should be con-

tinuous at each interface; the following equations
are obtained:

cosðqzLÞ � 0:5ðP̂11 þ P̂22Þ ¼ 0, (9)

ðĜ11 þ CĜ12ÞðĤ21 þ C0Ĥ22Þ

� ðĜ21 þ CĜ22ÞðĤ11 þ C0Ĥ12Þ ¼ 0, ð10Þ

where

C ¼ ðe�iqzL � P̂11Þ=P̂12, (11)

C0 ¼ ðe�iqzL � P̂
0

11Þ=P̂
0

12, (12)

Ĝ ¼ T̂
�1
ðmd1; kd1;Ld1Þ

Ys

r¼2

M̂ðmdr; kdr;LdrÞ

�T̂ðma1; ka1;�La1Þ, ð13Þ

P̂ ¼ T̂
�1
ðmn;an; kn;an;Ln;anÞ

�
YN

p¼nþ1

M̂ðmn;ap; kn;ap;Ln;apÞ

�
Yn�1
r¼1

M̂ðmnþ1;ar; knþ1;ar;Lnþ1;arÞ

�T̂ðmnþ1;ar; knþ1;ar;�Lnþ1;arÞ, ð14Þ
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with

M̂ðm; k; zÞ ¼ T̂ðm; k;�zÞT̂
�1
ðm; k; zÞ, (17)

M̂
0
ðm; k; zÞ ¼ T̂ðm; k; zÞT̂

�1
ðm; k;�zÞ, (18)

T̂ðm; k; zÞ ¼
eikz=2 e�ikz=2

ðik=mÞeikz=2 ð�ik=mÞe�ikz=2

 !
.

(19)

Eqs. (7)–(10) determine the localized electron
states lying within the minigaps. For real Bloch
wave number qz, Eqs. (7) and (9) give the
dispersion relation of the electron states in SL.
3. Numerical results and discussion

For numerical calculations, the AlxGa1�xAs-
based SL has been considered, as it allowed us to
realize and manipulate a wide range of potential
profiles. More specifically, the potential height and
the effective-mass value of a particular
AlxGa1�xAs layer can be adjusted by the Al
concentration x, e.g., according to the empirical
relations UðxÞ ¼ 944xmeV and mðxÞ ¼ ð0:067þ
0:083xÞ me;me being the free-electron mass [4]. For
numerical simplicity, we consider a three-layer-
based SL, where each cell consists of a1; a2 and a3
layers. The values of x in a1; a2 and a3 layers are
0.4, 0 and 0.1, respectively. The defect region
consists of only one layer made of GaAs (i.e.,
x ¼ 0).
To envisage the coupling effect between normal

and lateral degrees of freedom of an electron, we
begin with the study of the influence of the
transverse wave number kxy on the longitudinal
energy components of the localized states in the
structures shown in Fig. 1. The calculated electro-
nic structures are shown in Figs. 2(a) and (b) for
symmetric and asymmetric structures, respectively.
The lower and higher shade regions are denoted as
minibands 1 and 2, and the three regions from low
to high separated by the two allowed minibands
represent the zeroth, first and second minigaps,
respectively. Here, note that the zeroth and second
minigaps lie at the reduced mini-Brillouin zone
center, and the first minigap at the zone edge. The
solid curves a1–a3, a20–a30, and b1–b5 represent
the longitudinal energy spectra of the localized
states lying in the corresponding minigaps. For
symmetric structure, it is clearly seen from
Fig. 2(a) that only one localized state exists in
each minigap and merges into the bulk band when
the transverse wave number kxy reaches a certain
value. A new localized state appears at bigger kxy

after the first one merges into the bulk band in the
first and second minigaps, respectively. By calcula-
tions, we find that the localized states possess
definite parity, and the parity of a2 and a30 is odd,
while the parity of a1, a20 and a3 is even. For
asymmetric structure, one localized state appears
at the zeroth minigap, and two states exist in the
first and second minigaps, respectively (Fig. 2(b)).
When kxy46:3p=L and kxy45:3p=L, the higher
localized state in the first and second minigaps
merges into the second and third minibands,
respectively. The different behaviors of the loca-
lized states for the different types of structures can
be well understood. As is well known, the
formation of the minibands originates from the
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Fig. 2. Dependence of localized electronic levels on the transverse wave number kxy: (a) for symmetric structure, (b) for asymmetric

structure. Here La1 ¼ 3:0 nm, La2 ¼ 10:0 nm, La3 ¼ 3:0nm, and Ld ¼ 12:5nm. The three regions from low to high separated by two

minibands represent the zeroth, first and second minigaps, respectively. The dashed lines describe the boundary of minibands and

minigaps. The solid curves represent the localized energy spectra lying in minigaps.
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splitting of levels due to the periodicity coupling
between the adjacent quantum wells for a perfect
SL. As expected, we can find from Fig. 2 that the
minibands are same for both the symmetric and
asymmetric structures since it has nothing to do
with the stack sequence of the constituent layers in
an ideal triple-constituent SL. When introducing
structural defects into a perfect SL, the periodicity
coupling is locally broken down around the
structural defects. The periodicity-broken coupling
occurs, and leads to the appearance of new
splitting levels, where some of them are localized
states residing in the minigaps, while others turn
into the delocalized scattering states lying in the
minibands. For the symmetric structure consid-
ered here, the potential barriers at both sides of the
defect layer (i.e., a quantum well) are same. For
asymmetric structure, however, the two potential
barriers are different from each other. So the
coupling strengths between the defect layer and its
two adjacent quantum wells are different for
symmetric and asymmetric structures, which re-
sults in the different behaviors of the localized
states in the two structures. From Fig. 2, we can
also find that all minibands, minigaps and
localized energy levels always monotonically shift
towards the lower energy region with the increase
of the transverse wave number kxy. Besides, on
increasing the transverse wave number kxy the
width of the minigap becomes narrower, while an
opposite behavior for the miniband is observed.
Also the change of the higher-lying minibands and
minigaps is faster than that of the lower ones,
indicating that the higher-lying minibands and
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minigaps are more sensitive to the variation of the
kxy. These results are attributed to the decrease of
the effective-barrier height caused by the coupling
effect as the transverse wave number kxy increases
(see Eq. (2)).
To clearly reveal the effect of the defect layer on

the localized states in both symmetric and asym-
metric structures, we display the influence of the
defect layer thickness Ld on the longitudinal
energy components of the localized states, as
shown in Figs. 3(a) (symmetric structure) and (b)
(asymmetric structure). From Fig. 3, it can be
found that with the increase of the thickness Ld ,
the localized states appear periodically in each
minigap, and the branch number of the localized
states increases with the index of the minigap for a
given range of the thickness Ld . As far as each
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Fig. 3. Dependence of the localized levels on the defect layer thickn

structure. The solid and dash–dot curves represent the localized energ

La3 ¼ 3:0 nm, and kxy ¼ 1:0p=L. Others are the same as in Fig. 2.
branch of the localized state is concerned, its level
always shifts from the higher miniband edge to the
lower one across the minigap. Moreover, it looks
like the localized levels lying in the lower minigap
are the elongations of corresponding levels lying in
the higher minigaps, except for the first localized
state in each minigap for asymmetric structure.
This clearly indicates the evolution of the localized
states inside the minigaps.
As is well known, each eigenstate in the confined

systems with space-reverse symmetry has a definite
parity, i.e., the parity of the wave function of the
electronic states must be either even or odd as long
as the eigenstate is nondegenerate. In order to
elucidate the parity of the localized states, the
wave functions of localized states in the second
minigap for different Ld are shown in Fig. 4
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for symmetric structure: Figs. 4(a), (b), (c) and
(d) correspond to Ld ¼ 2:0; 3:0; 8:5 and 11.0 nm in
Fig. 3(a), respectively. It is clearly observed from
Fig. 4 that the parties of the localization branches
(a), (b) are even, and (c) and (d) odd. Similar
phenomena are found in the first minigap. Thus,
we can conclude that the parity of the localized
states alternates between even and odd parity with
the increasing of Ld . By comparing Fig. 4(a) with
(b), (c) and (d), it is clear that the localization
degree of the localized electron state becomes
stronger when the localized state moves from the
band edge to the center of the minigap, similar to
those of localized acoustic modes and optical
modes [13,18].
The wave functions of localized states in second

minigaps for asymmetric structure are also shown
in Fig. 5: Figs. 5(a) and (b) correspond to Ld ¼ 8:5
and 13.0 nm in Fig. 3(b), respectively. As expected,
one can clearly observe that the wave function of
the localized state has no definite parity in such an
asymmetric structure. Moreover, the wave func-
tion is mostly localized at the left side of the defect
layer. This is due to the fact that for the
asymmetric structure shown in Fig. 1(b), the
potential barrier of the left side of the defect layer
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is lower than that of the other side. As a result, the
electron wave function is easier to damp towards
the region with the lower potential barrier.
We now envisage the influence of the potential

height of the defect layer, the variations of
the localized energy levels with Ud for both sym-
metric and asymmetric structures are presented in
Figs. 6(a) and (b), respectively. Fig. 6(a) shows
that the localized sub-level shifts almost linearly
towards the high-energy region from the lower
miniband to the higher one as defect layer
potential height Ud increases for symmetric
structure. By calculation, we know that for given
structural parameters there are no localized states
appearing in the zeroth minigap for Ud430meV,
in the first minigap for Ud485meV, and in the
second minigap for Ud4200meV. However, for
an asymmetric structure, as shown in Fig. 6(b), the
localized sub-level extends towards the bigger
potential height Ud .
Figs. 7(a1)–(a3) and (b1)–(b3) describe the

influence of variation of different layer thicknesses
of the SL on the localized electron states in both
symmetric and asymmetric structures, respectively.
As can be seen in Fig. 7, increasing the thicknesses
of constituent layers causes a significant narrowing
of the miniband. However, the behavior of the
miniband versus the thickness of the constituent
layer is different for the different varied constitu-
ent layer. Such a behavior has been explained in
terms of a simple potential-profile-picture by
Kucharczyk et al. [9]. Our interest focuses on the
effect of the constituent layers on the localized
electron states. From Figs. 7(a1) and (b1), we can
find that with the increase of the thickness of layer
a1, all the localized levels in both symmetric and
asymmetric structures change rapidly for the scope
La1o3 nm, and then remain almost unchanged.
The lower localized state in the first and second
minigaps in symmetry structure merges into the
first and second minibands and ceases to exist at
La1 ’ 2 nm, respectively, while it exists in the
whole explored range in the asymmetry structure.
The localized states in asymmetry structure are
closer to the center of the minigap in each minigap
than those in symmetry structure when La143 nm,
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Fig. 6. Localized levels dependence on the potential height of the defect layer: (a) for symmetric structure, (b) for asymmetric structure.

Here Ld ¼ 12:0 nm. Others are the same as those in Fig. 2.
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which shows that the localization degree of the
electron states in the vicinity of the defect layer is
stronger in asymmetric structure than in sym-
metric structure. When increasing La2, the loca-
lized states rapidly shift towards lower energy in
asymmetric structure, while for the localized states
in symmetric structure only a small shift-down in
energy is found [see Figs. 7(a2) and (b2)].
From Fig. 7(a3), it is clear that the localized levels
in the symmetric structure are not sensitive
to the thickness of the layer a3. However, from
Fig. 7(b3), we find that the localized levels change
obviously with the thickness of the layer a3 except
that the upper localization branch in the first
minigap remains almost unchanged. From these
results, we can conclude that the localized states in
symmetric structure are more sensitive to the first
constituent layer than to the other constituent
layers in a certain thickness scope, which indicates
that localized states are predominantly governed
by the coupling between the defect layer and
its nearest constituent layer. For the asym-
metric structure, however, the localized states are
sensitive to all the constituent layers, especially to
the constituent layer with the lowest potential.
From these results, we can obtain rich localized
electronic spectra by adjusting the parameters
of the presented microstructures, and structural
symmetry.
4. Summary

In this paper, we derive general formulae to
calculate the localized electronic states considering
the effect of coupling between the electronic
transverse and longitudinal motion in an infinite
N-layered-based SL with structural defects. In
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particular, we have numerically studied the
coupling effect on the localized electronic states
in a triple layer SL with a structural defect layer.
A detailed comparison of localized electronic
levels between symmetric and asymmetric struc-
tures is given. The results show some inter-
esting physical effects: (1) the minibands are not
influenced by the structural symmetry, while the
localized states display different behaviors in both
symmetric and asymmetric structures; (2) a mono-
toic shifting towards the lower energy region of the
minibands, minigaps and localized levels, narrow-
ing of the minigaps and broadening of the
minibands are found when increasing the trans-
verse wave number kxy, and the coupling effect is
more obvious on the higher-lying minibands,
minigaps and localized energy levels; (3) with the
increase of the defect layer thickness Ld , the
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localized states appear periodically in each mini-
gap, and the branch number of the localized states
increases with the index of the minigap for a
given range of the thickness Ld ; (4) for sym-
metric structure, the parity of the localized states
alternates between even and odd parity in each
minigap.
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