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Abstract: Electron correlation effect in conjugated polymer is a long-standing problem, especially for the nonlin-

ear optical properties. We have implemented a spin-adapted Coupled Cluster with singles and doubles excitation

with local molecular orbital approach. As a first application, we evaluate the static polarizability of conjugated poly-

ene chains with finite field approach. It is found that the local molecular orbital approach can tremendously reduce

the computational costs at sufficiently high accuracy. It is also found that the electron correlation can largely reduce

the molecular polarizability with respect to the Hartree-Fock mean field results.
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Introduction

Conjugated polymers have great potentials in electronics and

optoelectronics application. From the theoretical modeling point

of views, the electron correlation effects have been found to

play an essential role in conjugated chain for the optical proper-

ties as well as for nonlinear optical responses.1–4 In the context

of quantum mechanical methods for studying the electrical and

optical properties of conjugated polymers, Hartree-Fock mean-

field theory,5 the Configuration Interaction (CI),6 the Random

Phase Approximation (RPA) or time-dependent Hartree-Fock,7

Many-body Perturbation Theory,8,9 Coupled-Cluster (CC),10

Density Functional Theory (DFT),11 and the Density Matrix

Renormalization Group theory (DMRG)12–14 have been often

employed to evaluate either the ground state property or the ex-

citation energies or the linear and nonlinear optical responses.

These methods have been developed with both ab initio and

semi-empirical Hamiltonians. It has been established that the

electron correlation play a key role in the molecular electronic

structure. However, the highly demanding computational costs

of traditional post-Hartree-Fock methods severely limit their

application scopes. Many efforts have been devoted to develop-

ing various low-scaling methods in recent years.15–40

We adopt the Pariser-Parr-Pople (PPP) model to describe

conjugated hydrocarbon molecules.41–43 PPP model is an effec-

tive way to describe the p-electron properties for conjugated poly-

mers. One of the present authors and his coworkers had first

developed a numerical scheme for nearly exactly solving PPP

model with long-range Coulomb interaction for long conjugated

chain by DMRG method.44,45 They have cautioned that for

short-ranged Coulomb interaction, the methods based quasi-par-

ticle pictures such as 2nd and 3rd Green’s function or RPA and

second-order RPA could qualitatively deviate from the nearly

exact solutions for the band gap and the lowest-lying excited

state.45 Even though the recent advances of DMRG for quantum

chemistry have been quite impressive,46–48 for a general three-

dimensional molecule, DMRG is still not yet a practical

approach in terms of both accuracy and computational costs.

DFT-based method has become an overwhelming computational

tool in recent decade. Its intrinsic problem of empirical func-

tional instead of exact, renders DFT to be still far from an all-

purpose computational tool. For example, in the matters of 1Bu

vs. 2Ag orderings, charge-transfer type excitation, and the charge

localization, DFT gives qualitatively wrong answers.49 Even

worse, it has been shown that DFT fails to reproduce nonlinear

optical (NLO) response for large system, due to the deficiency

in the conventional exchange functional.50 In this respect,

Coupled Cluster might be a good choice to treat electron corre-
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lation, and to provide benchmarks for other approximate meth-

ods. As we have shown that for conjugated chain, Coupled Clus-

ter with singles and doubles excitations (CCSD) can produce

quite satisfactory results for the ground state and lowest-lying

excited states,51 for instance, in terms of the excited state order-

ings52 as well as the singlet-triplet splitting.53

Local molecular orbital was introduced to bridge the local

chemical bonds concepts with the delocalized molecular orbi-

tals.54–58 The local correlation approach was proposed in recent

decades.15,59 It makes use of the spatial localization of localized

molecular orbital (LMO) to reduce the computational cost in the

electronic correlation calculation.15–40,60 Korona and Werner39

and Crawford and King40 combined CCSD and its Equation of

Motion CCSD (EOM-CCSD) method with the local correlation

approach. Their results show that great amounts of computa-

tional costs can be reduced. It should be noted that these studies

have been carried out in the ab initio framework and the system

treated are still limited to relatively small molecules or noncon-

jugated chains. The primary motivation of this work is to imple-

ment a local orbital CCSD to study the linear and nonlinear op-

tical response for long conjugated chain molecules, specifically

on the electron correlation effect, within a finite-field approach

for the PPP model.

Theoretical Methodology

PPP Model

We choose Pariser-Parr-Pople model41–43 to model the conju-

gated hydrocarbons. Hamiltonian in the PPP model reads as fol-

lows :

H ¼ �
X
ij

tijC
y
i;rCj;r þ U

X
i

ni;"ni;# þ 1

2

X
ij

Vijðni � 1Þðnj � 1Þ

(1)

Here, hiji means the summation are only made in the bonded

sites. And in self-consistent field (SCF) level, one can obtain the

single-particle Fock operator matrix:

Flm ¼ tlm � 1

2
PlmVlm; for l 6¼ m (2)

Fll ¼ Ul þ
X
m

PmmVlm � 1

2
PllUl (3)

where Plm is the density matrix, tlm is the transfer integral, and

Ul is the on-site repulsion energy.

Spin-Adapted Coupled-Cluster Singles and Doubles

Approach (SA-CCSD)

Spin-adapted coupled cluster approach has been developed pre-

viously60,61 and we here only give a brief description for facili-

tating the subsequent discussions. The ground state wave func-

tion in CC theory is given based on the exponential ansatz:

jwcci ¼ eT j0i (4)

where

eT ¼ 1þ T þ 1

2!
T2 þ 1

3!
T3 þ � � � þ 1

n!
Tn þ � � �; T ¼

X
i

Ti (5)

The ket |0[ represents the Hartree-Fock self-consistent-field

Slater determinant. At the CCSD level, T includes only singles

and doubles and the corresponding cluster operators are defined

as follows:

T1 ¼ tai Eai; T2 ¼ 1

2
tabij EaiEbj;Eai ¼ aþa ia þ aþb ib (6)

Throughout this article, i, j, k, l are used for occupied molecular

orbitals (MOs), a, b, c, for unoccupied ones, and p, q, r, s for

generic orbitals. Hereafter, the Einstein summation convention is

assumed unless specified. One can obtain the equations for the

cluster expansion coefficients ts and the total energy by projec-

tion as follows:

H exp ðTÞj0i ¼ Eccj0 >;

0h jEia exp ð�TÞH exp ðTÞj0i ¼ 0;

0h jEiaEjb exp ð�TÞH exp ðTÞj0i ¼ 0:

(7)

The explicit iteration equations can be found in literature.60

Localized Molecular Orbitals and Domains

First, one needs localized molecular orbitals (LMOs) to replace

canonical molecular orbitals (CMOs). We adopt the Pipek and

Mezey’s proposition to obtain LMOs,54 though we have tested

other propositions. Localization is done by two by two orbital

rotations of CMOs till the required convergence criterion is

reached. The molecular orbital |pi is expressed as the linear

combinations of atomic orbitals (LCAO): |pi 5 Cpl|li, and the

orbital rotation is of the form:

jp0i¼ cos cjpi þ sin cjqi; jq0i ¼ � sin cjpi þ cos cjqi (8)

Here, |pi and |p0iare initial and the updated MOs, respectively.

The rotation angle c is related to the quantities Apq, Bpq as fol-

lows54:

sin 4c ¼ BpqðA2
pq þ B2

pqÞ�
1
2; cos 4c ¼ �ApqðA2

pq þ B2
pqÞ�

1
2 (9)

where

Apq ¼
X
A

fðPAÞ2pq �
1

4
½ðPAÞ2pp � ðPAÞ2qq�g;

Bpq ¼
X
A

ðPAÞpq½ðPAÞpp � ðPAÞqq�

ðPAÞpq ¼
1

2

X
q

X
l2A

½C�
pqSqlCql þ C�

plSlqCqq� ð10Þ

Here, Sql is the overlap matrix and the summation in the se-

cond line of eq. (10) is restricted to atomic orbitals belonging to

atom A.

For PPP model, zero differential overlap approximation is

assumed and we have
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ðPAÞpq ¼
X
l2A

C�
plCql: (11)

It should be pointed out here that localizations for occupied and

virtual MOs are carried out separately, that is, the occupied and

the virtual MOs will not be mixed. Since the resultant LMOs

can be considered as a unitary transformation of original

CMOs,54 LMOs remain orthonormal each other, just like the

CMOs: the unitary transformation keeps orthonormality.

After LMOs are obtained, the approach proposed by

Boughton and Pulay59 is used to determine the unoccupied local

molecular orbitals (ULMO) assigned to the corresponding occu-

pied orbitals and the pairs. The atoms are ordered according to

their Mulliken charges for a given occupied LMO, and then the

basis functions which contribute the most (Mulliken charge) to

the orbital are used to expand the corresponding ULMO. If the

expansion is as satisfied as expected, it is considered as impor-

tant for the related OLMO.

For a given occupied LMO |ii, firstly, atomic Mulliken

charges (
P

l2A PlmSml) are computed and the orbital domain [i]

is constructed by those atoms that contribute significantly to the

Mulliken charge. The atoms with large Mulliken charge are

added into the orbital domain until the sum of the charges reach

a threshold, denoted as w1ð0 � w1 � 2:0Þ. Secondly, we use this

orbital domain to expand a ULMO |ai:

ja0i ¼
X
l2½i�

C
0
aljli (12)

The expansion coefficients are determined by minimizing the

functional f 59:

f ðC0Þ ¼ a� a0h ja� a0i ¼
X
l;m

ðCal � C0
alÞðCam � C0

amÞSlm (13)

Minimizing the above functional, one can obtain linear equations

for C0
al as follows:

X
m2½i�

SlmC
0
am ¼

X
r

SlrCar (14)

Then the minimum of f(C0) is calculated. If the minimum is less

than a given criterion, denoted as w2, then the ULMO |ai is con-
sidered to be important for LMO |ii and is eventually kept as a

correlation orbital for |ii, and it is included eventually in a set

denoted as [I]. Once all the ULMOs have been checked out and

the domains for all the occupied LMOs are constructed, one

starts to build orbital domains for LMO pairs [IJ]. This is simply

done by assuming [IJ] is the union of [I] and [J], or alterna-

tively, one first constructs [ij] as the union of [i] and [j], and

then [IJ]s are constructed.

Local Correlation in CCSD

After all the [I]’s and [IJ]’s are obtained, we can solve eq. (7).

The CCSD amplitudes tai and tabij equations are solved only for

the locally correlated pairs of orbitals. Namely, tai 5 0, if

a 62 ½I�, and tabij 5 0 if a; b 62 ½IJ�:

The CCSD correlation energy is now expressed as follows:

Ecorr
CC ¼ 2

X
a2½I�

tai fia þ
X

a;b2½IJ�
ðtabij þ tai t

b
j ÞLiajb;

ðLiajb ¼ 2ðiajjbÞ � ðibjjaÞÞ ð15Þ

Further reduction of computational costs can be achieved

through the following procedure suggested by Li et al.25 Defin-

ing a quantity:

Xði; jÞ ¼ ðCi
lC

j
m
SlmÞ2 (16)

If X(i, j) is less than a given threshold, denoted by w3, then the

pair (i, j) are considered to be unimportant and all the relevant

tabij are set to be zero.

Computational Details

We take polyenes C2nH2n12 as example. The PPP parameters

are: b1 5 1.48 Å and transfer integral t1 5 22.2 eV for single

bond; b2 5 1.35 Å and 22.6 eV for double bond. The on-site

repulsion for p-orbital is U 5 11.13 eV and the Ohno-Klopman

parameterization for Coulomb integrals is Vlm ¼ 14:397 3
ð1:673þ r2lmÞ�

1
2. The electric field F is included by adding an

additional term: �eFxl to the diagonal Fock matrix elements:

the electric filed is assumed to be along the chain direction. The

e is the electron charge and xl is the position of l-th atom. The

longitudinal polarizability is evaluated at zero electric field by

numerical derivations of total energies with respect to the elec-

tric field strength:

a ¼ @2E

@F2

� �
F¼0

¼ �EðdFÞ þ Eð�dFÞ � 2Eð0Þ
ðdFÞ2 (17)

The values of electric field are chosen to be 0, 64 3 1024 a.u.

for the purpose of finite differentiation calculations. The direct

inversion in the iterative subspace (DIIS) method is employed

both in SCF and CCSD iterations62–64 to improve the conver-

gence of the nonlinear iterations.

Results and Discussions

For all the molecules studied here, we find that each LMO is

typically localized within one double bond. That is, there are

only two atomic orbitals contribute much more than others to

LMO. This makes the local correlation approach highly efficient.

The number of important atoms for a given occupied LMO is

typically less than 10. The numbers of virtual LMOs included in

all [IJ] is usually less than 23 for all the systems studied here.

We first discuss the threshold parameters w1, w2, and w3,

which are key to make a balance between accuracy and effi-

ciency. The optimal set with w1 5 1.998, w2 5 1024, w3 5
1026 are found to satisfy the requirements for the computational

cost reduction and the precision of the numerical differentiation

with respect to the electric field strength. We give in Table 1

the comparison of thresholds vs. the number of double excitation
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amplitudes to be optimized as well as the correlation energies

for C30H32. Compared with double excitation amplitudes, the

single excitation amplitudes do not cost much computational

costs for evaluation. It is seen from the Table that the local

approach works quite satisfactory. Namely, for all cases listed in

the Table, more than 98% of correlation energy is retained. At

the same time, the number of coefficients to be optimized is

reduced from 25,425 to only 2724.

We then keep the optimal threshold parameters (ws) and

investigate the scalability of computational cost vs. the system

size. The results are presented in Table 2. For the longest chain

(C100H102) investigated here, the largest deviation is only 0.0026 eV,

namely 0.02% for the correlation energy. The corresponding

number of coefficients to be optimized is vastly reduced from

3.13 3 106 to 56,000 only. These results are also depicted in

Figure 1. The canonical CCSD doubles coefficients scales as M4

(M is a measure of the size of the system, e.g., the number of

the double bonds), whereas for LCCSD it scales linearly as

showed in the inset of Figure 1.

The comparison of the computational costs in CPU time for

LCCSD and conventional CCSD are displayed in Figure 2. It is

noted that even though the number of optimized amplitudes

scales linearly with the system size, the CPU time does not scale

linearly in the present LCCSD implementation. This is due to

the iteration procedure for solving the LCCSD equation is not

linearly scaled. Still, the CPU savings are very remarkable for

long chain systems.

As a first application of the LCCSD, finite field method is

used to obtain the numerical derivatives of the energies with

respect to electric field, and the derivatives at zero fields are cal-

culated according to eq. (17).

We gather recently reported ab initio polarizabilities65 and

our results in Table 3. Polarizabilities (column B in CCSD/PPP

part) obtained from the geometry given in part III are a bit less

than the ab initio counterparts. The CCSD/PPP polarizabilities

are improved (column A in CCSD/PPP part) when the same ge-

ometry as in ab initio calculations are taken (though still smaller

than ab initio values:aPPP=aab initio ¼ 0:66 � 0:78). From the Ta-

ble, it is obvious that the CCSD/PPP polarizabilities are seri-

ously affected by the geometry. For example, Champagne et al.

reported their MP2 polarizablities for C12H14 and C20H22.
66

They obtained values of 357 and 778 a.u. in RHF/6-31G geome-

try with BLA (bond length alternation) 5 0.112 Å, and 388 a.u.

and 917 a.u. for B3LYP/6-311G* geometry with BLA 5 0.065 Å,

respectively, see Table 3. The difference between PPP model

and the ab initio is understood that PPP parameters adopted here

were obtained mostly through spectroscopy, not based on total

energy geometry optimization. The finite-field approach is based

on total energy. It is thus not surprised to find such 20–30%

deviation.

In Figure 3 we compare polarizabilities per unit cell (only

correlation contribution considered here) calculated by CCSD

and LCCSD. It is clearly seen that LCCSD reproduces almost

the same results as the CCSD. And LCCSD can be extended for

much larger system. One can also find in Figure 3 that the polar-

izability obtained by LCCSD is discontinuous for some systems,

e.g., systems with 35, 54, 77 unit cells. We owe this discontinu-

ity to numerical instability, because the second order derivative

of energy with respect to the field requires rather high precision.

We finally assess the role of electron correlation from

LCCSD calculations by extracting the Hartree-Fock contribution,

see Figure 4. It is found that electron correlation always contrib-

utes negatively. For example, for chain length of 78 unit cells

(C156H158), the Hartree-Fock result is 113.2 a.u., and the correla-

tion contribution is 247.2 a.u., making the final result to be 66

a.u. This is in sharp contradictory to the general result calculated

from DFT, which in general gave the polarizability value much

larger than Hartree-Fock,50 namely, the electron correlation con-

tributes positively to polarizability from DFT.

A final remark should be made on the comparison between

local approaches between ab initio and semi-empirical model. In

the state-of-the-art ab initio local CCSD approach,23 several

more techniques have been employed such as matrix sparcity,

classifications of spatial domains for two-electron terms as well

Table 1. The Number of Amplitude Coefficients to be Optimized

and the Corresponding Correlation Energy Obtained by LCCSD for

Polyene C30H32 for Different Threshold Cutoffs.

Nloc 2Eloc (eV) w1 w2 w3

13,465 4.2659 1.9998 1.0d-4 1.0d-6

10,343 4.2658 1.998 1.0d-4 1.0d-6

8420 4.2654 1.98 1.0d-4 1.0d-6

6441 4.2634 1.98 1.0d-3 1.0d-6

5255 4.2546 1.998 1.0d-4 1.0d-4

4076 4.2542 1.98 1.0d-4 1.0d-4

2724 4.2211 1.998 1.0d-3 1.0d-3

The canonical coefficients number is 25,425 corresponding to a correla-

tion energy Ecorr 5 24.2663 eV, to be compared with.

Table 2. Comparison of LCCSD (Nloc, Eloc) with Canonical CCSD (N, E) for the Number of Optimized

Double Excitation Coefficients and the Correlation Energies, for Elongating the Chain Lengths (with the

Optimal Parameters: w1 5 1.998, w2 5 1.0d-4, w3 51.0d-6).

Systems C30H32 C40H42 C50H52 C60H62 C70H72 C80H82 C90H92 C100H102

Nloc 10,343 17,066 23,791 30,516 37,241 43,966 50,691 57,416

2Eloc (eV) 4.2658 5.6924 7.1189 8.5454 9.9720 11.3985 12.8250 14.2515

N 25,425 80,200 1.96E5 4.05E5 7.51E5 1.28E6 2.05E6 3.13E6

2E (eV) 4.2663 5.6931 7.1199 8.5468 9.9736 11.4004 12.8272 14.2541
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as the direct integral transformation for two-electron integrals,

which eventually result in a linear scaling, as shown in the

example of (Gly)n. We note that Schutz and Werner concluded

that their approach does not work well for conjugated system.23

In our work, we only applied the local MOs for the study of

scalability. Even though the method is not fully linear scaling,

tremendous computational costs have been reduced. Most inter-

estingly, we find that the local MO scheme works quite well for

conjugated system, especially for very long conjugated polyenes,

the accuracy is found to be very satisfactory, since the evalua-

tion of finite field is very accuracy-demanding. We conjectured

that maybe it is the further approximations beyond the bare local

treatments worsen the accuracy for conjugated systems. This

deserves further more careful studies.

Conclusions

To conclude, a local correlation approach combined with semi-

empirical Hamiltonian is implemented in the framework of

CCSD/PPP, which was shown to be highly efficient and accurate

for conjugated molecules. Much lower scaling for CPU costs

has been achieved. The test calculations have been performed to

evaluate the polarizability as a function of chain length. It is

found that (i) LCCSD gives almost the same results as the ca-

nonical CCSD for all the molecular sizes; (ii) the local correla-

tion approach works very well even for conjugated systems; and

(iii) the electron correlation plays an essential role in determin-

Figure 1. Numbers of the doubles coefficients required to be opti-

mized versus the system size for LCCSD and CCSD. The inset plot

is enlarged for LCCSD. Nloc and N are the double coefficient num-

ber for LCCSD and canonical CCSD, respectively.

Figure 2. CPU time consumption versus system size: tnormal is for

canonical CCSD calculations and tloc is for LCCSD.

Table 3. Longitudinal Polarizabilities of Polyenic Systems (in a.u.).

N MP2a CCSDa

CCSD/PPP

Ab Bc

2 72.07 (66.41) 70.38 (64.47) 46.35 (50.94) 41.21 (41.53)

3 138.48 (88.36) 134.85 (80.17) 97.30 (65.80) 82.74 (50.75)

4 226.84 (109.46) 215.02 (98.06) 163.10 (77.51) 133.49 (57.07)

5 336.30 (127.98) 313.08 (108.19) 240.60 (86.21) 190.56 (61.20)

6 464.28 (186.29) 421.27 (/) 326.81 (92.36) 251.76 (63.83)

10 1128.3 (/) 715.37 (101.44) 514.86 (67.15)

Experimental value for C4H6 is 58.31 a.u. ref. [65]. N is the number of

unit cells, DaN ¼ aNþ1 � aN are given in parentheses.
aReference 66.
bObtained by our method with geometry used in ref. 67, and the related

PPP parameters are b1 5 1.428 Å, t1 5 22.500 eV, b2 5 363 Å, t2 5
22.709 eV; U 5 11.13 eV.
cResults reported in this study.

Figure 3. Correlation contributions to longitudinal polarizablities

per unit cell (absolute amplitudes are given here) for polyenes: com-

parisons between CCSD and LCCSD results. CCSD calculations are

carried out up to 50 unit cells.
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ing the molecular electronic polarizability and it tends to reduce

the polarizability, in sharp contrast to DFT.
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value and denoted as Corr in the figure).
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