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Thermoelectric energy converters can directly convert heat to electricity using semiconducting

materials via the Seebeck effect and electricity to heat via the Peltier effect. Their efficiency

depends on the dimensionless thermoelectric figure of merit of the material, which is defined as

zT = S2sT/k with S, s, k, and T being the Seebeck coefficient, electrical conductivity, thermal

conductivity, and absolute temperature respectively. Organic materials for thermoelectric

applications have attracted great attention. In this review, we present our recent progress made in

developing theories and computational schemes to predict the thermoelectric figure of merit at the

first-principles level. The methods have been applied to model thermoelectric transport in closely-

packed molecular crystals and one-dimensional conducting polymer chains. The physical insight

gained in these studies will help in the design of efficient organic thermoelectric materials.

1 Introduction

The thermoelectric power generators and coolers interconvert

heat and electricity via the Seebeck and the Peltier effect. If a

temperature difference is applied to a material, a voltage

difference is created under open circuit conditions. The phenom-

enon is known as the Seebeck effect. The Seebeck coefficient S,

aka the thermopower, is defined as the ratio of the voltage

difference to the temperature difference. For p-type semicon-

ductors the Seebeck coefficient is positive, and for n-type

semiconductors it is negative. If an electrical current is

imposed on a thermocouple composed of different materials,

heat is generated at one junction and absorbed at the other,

which is known as the Peltier effect. The Peltier coefficient P is

defined as the ratio of the rate of heat exchange to the

electrical current. The thermoelectric coefficients obey the

Kelvin relationships P = ST.1 Thermoelectric cooling and

power generation require joining two different materials,

usually a p-type semiconductor with a positive S and an n-type

semiconductor with a negative S. Therefore, it is P and S of

couples that matter in practice. Two irreversible processes,

thermal conduction and Joule heating, lower the performance
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of thermoelectric devices to less than the thermodynamic limit.

A good thermoelectric material must combine a large Seebeck

coefficient S with high electrical conductivity s and low

thermal conductivity k. In the most simplified cases, assuming

that S, s, and k do not vary with temperature, the maximum

efficiency of a thermoelectric device can be computed analyti-

cally, and the resulting efficiency is given by2,3

Z ¼ DT
Th
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z �T
p

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z �T
p

þ Tc=Th

; ð1Þ

where Th is the temperature at the hot and Tc at the cold

junction, DT = Th�Tc, and %T = (Th + Tc)/2. The thermo-

electric figure of merit is defined as

Z ¼ ðSp � SnÞ2

½ðkp=spÞ1=2 þ ðkn=snÞ1=2�2
; ð2Þ

where the subscripts p and n denote properties related to the

p-type and n-type semiconducting thermoelectric materials. If

there were no irreversible effects, the efficiency is DT/Th, the

Carnot limit of heat engines. If the thermoelectric properties of

the p-type and n-type materials are similar, Z for a thermo-

couple is approximately the average of z for individual materi-

als, and it is practical to optimize the materials separately. The

dimensionless figure of merit of a material is defined as zT =

S2sT/k. It is an intensive material property of prime importance.

Both electrons and phonons are heat carriers, so the thermal

conductivity has two contributions, the electrical thermal conduc-

tivity ke and the lattice thermal conductivity kL. An efficient

thermoelectric material should combine properties such as large

Seebeck coefficient, high electrical conductivity, and low thermal

conductivity. In other words, in the design of thermoelectric

materials phonon transport should be suppressed and at the same

time electrical transport should be enhanced. These requirements

are very often conflicting, which poses a huge challenge to

optimization of thermoelectric materials.

In recent years, there have been significant advances in the

field of thermoelectric materials and devices. In addition to

developing the next generation of thermoelectric materials, it

has been recognized that nanostructures and low-dimensional

structures are able to improve the thermoelectric performance

of bulk materials. By introducing nanoscale constituents in

host materials and increasing interfaces, the power factor S2s
can be enhanced and the thermal conductivity reduced. To

find out significant progress made in the field of thermo-

electrics during the past years, we refer our readers to recent

reviews that cover different aspects of the field.4–7 In this

perspective, we show specific interest in organic thermoelectric

materials. The best bulk thermoelectric materials are bismuth

telluride based alloys with zT around one. However, the

production of the alloys is not economic nor it is environ-

mental friendly due to the fact that these materials are toxic

and Te is one of the rarest elements on earth. Compared to

traditional inorganic thermoelectric materials, organic electro-

nic materials have the advantages of being flexible, low-cost,

and solution processable. Since organic materials are charac-

terized by poor thermal conductivity, they have been suggested
Jianming Chen

Jianming Chen is currently
a PhD candidate in the group
of Prof. Zhigang Shuai at
the Institute of Chemistry,
Chinese Academy of Sciences.
He obtained his BS degree at
the South China University
of Technology in 2007. His
research interests are the
first-principles calculations
of thermoelectric properties
in organic materials and
molecular-scale simulation
of self-assembly in organic
electronic devices.

Jinyang Xi

Jinyang Xi graduated with a
BS degree majoring in physics
from Northeast Normal
University, Changchun, China
in 2009 and is presently a PhD
student in Prof. Zhigang
Shuai’s group at Tsinghua
University. His research inter-
ests are theoretical evaluation
of electron–phonon scatterings
and charge transport in nano-
materials and molecular
crystals.

Zhigang Shuai

Zhigang Shuai, PhD 1989
Fudan University, Shanghai.
1990–2001, postdoc and
research associate with Prof.
Jean-Luc Brédas at the
University of Mons, Belgium.
2002–2008, ‘‘Hundred-Talent’’
professor at the Institute of
Chemistry of the Chinese
Academy of Sciences in Beijing.
2008 to date, Changjiang
Scholar Chair professor,
Tsinghua University, Beijing.
His research interests are
theoretical modeling of the
organic functional materials

for the opto-electronic properties. 240 publications with
h-index = 40. He received the Outstanding Young Investigator’s
Fund (2004) and Chinese Chemical Society-AkzoNobel Chemical
Sciences Award (2012). He is a member of the International
Academy of Quantum Molecular Science, the Academia
Europaea, and a Fellow of the Royal Society of Chemistry.

Pu
bl

is
he

d 
on

 0
6 

Se
pt

em
be

r 
20

12
. D

ow
nl

oa
de

d 
by

 T
si

ng
hu

a 
U

ni
ve

rs
ity

 o
n 

06
/0

4/
20

14
 0

4:
02

:0
6.

 
View Article Online

http://dx.doi.org/10.1039/c2cp42710a


This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys., 2012, 14, 16505–16520 16507

for thermoelectric applications. A number of conjugated

polymers have been studied, such as polyacetylene, polypyr-

roles, polyanalines, polythiophenes, polycarbazoles, and so

on, see a recent review (ref. 8). However, the best thermo-

electric efficiency so far reported is 0.25, obtained in poly(3,4-

ethylenedioxythiophene) (PEDOT) nanowires by the accurate

control of the doping level.9 As observed in inorganic materials,

thermoelectric power factors were enhanced in PEDOT nano-

wires compared to those in thin films.10 In addition to

conducting polymers, small organic molecules such as penta-

cene have been studied for thermoelectric applications. The

maximum power factor of 2 � 10�5 W m–1 K�2 was reported

in the iodine doped pentacene thin film,11 one order of

magnitude higher than that in the pentacene thin film doped

with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane.12

The problem associated with organic thermoelectirc materials

is that the efficiency is still very low. It is known that thermo-

electric power generators can become competitive with other

renewable technologies provided one can develop materials

with zT> 1.5 at the appropriate temperatures, but progress in

zT values is slow. However for practical applications, it is the

electricity cost that matters not the thermoelectric efficiency.

There are many free heat sources in the real world, such as

vehicle waste heat, even a modest fraction of this thermal

waste can be recovered, the savings in fuel and reductions in

carbon dioxide are considerable.

The progress made in searching for organic thermoelectric

materials also raises questions on the fundamental under-

standing of charge and phonon transport in organic materials.

Theoretical modeling of charge and phonon transport is no

doubt necessary in order to develop design strategies of

efficient organic thermoelectric materials. Recently, we inves-

tigated thermoelectric transport in organic molecular crystals

by characterizing both electrical and phonon transport at

the first-principles level.13,14 In this review, we summarize

our progress made in developing a computational scheme,

which is completely parameter free, to predict thermoelectric

performance of highly-ordered organic model systems. In

the first part of the review, we present the theory and

methodologies used to model charge carrier transport and

phonon transport, which include Boltzmann transport theory,

deformation potential (DP) theory, and nonequilibrium

molecular dynamics (MD) method. In the second part, we

show applications of the theories to molecular crystals

including pentacene, rubrene, and phthalocyanines, as well

as single polymer chain P3HT. The doping effect on the

electrical transport coefficients, and the anisotropy and defect

effects in phonon transport have been addressed. Finally, we

discuss limitations of our methodologies and challenges for

theoretical modeling of thermoelectric transport in organic

materials.

2 Modeling thermoelectric transport at the

first-principles level

The theories described below assume that electrons are

delocalized in highly-ordered and closely packed conjugated

systems, where doping concentration is not so high that the

electron–electron correlation effect can be ignored.

2.1 Boltzmann transport theory

In the single particle approximation, the state of electrons in

solids is described by a distribution function in the phase space

(r, k) as a function of time. The electron distribution under the

equilibrium follows the Fermi–Dirac distribution

f0ðekÞ ¼
1

exp½ðek � mÞ=kBT � þ 1
: ð3Þ

It undergoes deformation in the external fields, such as in the

electric field, the electrons are accelerated causing a drift of the

distribution in the k space. During the movement, charge

carriers are subject to scatterings from the phonons and

defects. The scatterings help the electrons to be restored to

the equilibrium distribution. The time evolution of charge

carrier distribution function in the external fields, including

the electric or magnetic fields and thermal gradient, is described

by the Boltzmann transport equation15,16

@f

@t
¼ �v � rrf þ

e

�h
Eþ 1

c
v�H

� �
� rkf þ

@f

@t

����
scatt:

ð4Þ

where v is the group velocity defined as

v ¼ 1

�h
rkek: ð5Þ

To solve the equation, we invoke the relaxation time approxi-

mation for the scattering term

@f

@t

����
scatt:

¼ � f � f0

t
ð6Þ

The relaxation time measures how quickly the electrons are

restored to the equilibrium distribution via scatterings. In the

existence of an electric field and retaining only the first-order

term, the steady-state distribution is

fk ¼ f0ðekÞ þ e
@f0
@e

tkvk � E ð7Þ

The electrical current is defined as

J ¼ �e
X
k

fkvk ð8Þ

where e is the elementary charge. Substituting eqn (7) into

eqn (8) and based on Ohm’s law, we obtain the expression for

the electrical conductivity tensor

s ¼ e2
X
k

� @f0
@e

� �
vkvktk ð9Þ

In the derivation above, we have taken advantage of the fact

that there is zero net current flow in the absence of fields.

Similarly, if a thermal gradient is applied, charge carriers

diffuse, resulting in an electric field that opposes the diffusion.

The net electrical current is

J = sE + wrT (10)

The Seebeck coefficient is defined as the ratio of the

electric field to the temperature gradient when the electrical
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current is zero. We have

S ¼ � E

rT ¼
w
s

ð11Þ

The steady-state distribution function can be written as

fk ¼ f0ðekÞ þ
@f0
@e

ek � m
T

tkvk � rT

þ e
@f0
@e

tkvk � E
ð12Þ

utilizing the relation @f0
@T ¼ � @f0

@e

� �
e�m
T
.

Substituting eqn (12) into eqn (8) and combining eqn (10),

we have

w ¼ e
X
k

� @f0
@e

� �
ek � m
T

vkvktk ð13Þ

The thermal gradient induces not only electrical current but

also heat current, as electrons carry charges as well as energy.

The heat current is defined as

JQ = JE � mJP (14)

where JE is the energy current and JP is the particle current.

The heat current of charge carriers is further expressed as

JQ ¼
X
k

fkvkek � m
X
k

fkvk

¼
X
k

ek � mð Þfkvk
ð15Þ

Substituting eqn (12) into eqn (15), the heat current is

written as

JQ = �k0rT �wTE (16)

with

k0 ¼
X
k

� @f0
@e

� �
ek � mð Þ2

T
vkvktk ð17Þ

The electronic contribution to the thermal conductivity is

defined as the ratio of the heat current to the temperature

gradient when the electrical current is zero. In accordance with

this definition, and in combination with eqn (11) and (16), we

can identify

ke = k0 � S2sT (18)

This shows that all transport coefficients can be obtained

once a kernel tensor as X
k

vkvktk ð19Þ

is calculated. The kernel is called the transport distribution

function. The group velocity and band energy can be deter-

mined from first-principles band structure calculations. It is

noted that the energy derivative of the Fermi–Dirac distribu-

tion function shows up in the expressions derived for transport

coefficients. The effect of the term is that only bands close to

the Fermi level contribute to electrical transport. The charge

carrier concentration is defined as

Nn ¼ 2

Z
CB

gðeÞf0de ð20Þ

for electrons and

Np ¼ 2

Z
VB

gðeÞð1� f0Þde ð21Þ

for holes with g(e) the density of states (DOS).

We assume that band structures do not change with the

Fermi level; in the rigid band approximation, doping effect is

modeled simply by shifting the Fermi level position. To

calculate electrical transport coefficients, the key is to deter-

mine the electron (hole) relaxation time. The scattering term

can be expressed as

@f

@t

����
scatt:

¼
X
k0

Wðk0; kÞfk0 ð1� fkÞ
�Wðk; k0Þfkð1� fk0 Þ

� 	
ð22Þ

where Wðk; k0Þ is the transition probability. For elastic scat-

terings ek0 ¼ ek, we have Wðk0; kÞ ¼Wðk; k0Þ and eqn (20) is

simplified as

@f

@t

����
scatt:

¼
X
k0

W k; k0ð Þ fk0 � fkð Þ ð23Þ

Combining eqn (6), (7), and (23), the relaxation time is

expressed as

1

tk
¼
X
k0

W k; k0ð Þ 1� vk0tk0 � eE
vktk � eE

� �
ð24Þ

where eE is the unit vector in the direction of the electric field.

In principle, eqn (24) can be solved iteratively. To avoid

complexity, eqn (24) is further approximated as

1

tk
¼
X
k0

Wðk; k0Þð1� cos yÞ ð25Þ

where (1 � cosy) describes the scattering angle weighting

factor for a spherical energy surface. y is the angle between

the two wave vectors. By applying the Fermi’s Golden rule, the

scattering probability can be written as

Pk ¼
X
k0

Wðk; k0Þ ¼ 2p
�h

X
k0

Mðk; k0Þj j2d ek � ek0ð Þ ð26Þ

where |M(k,k0)|2 is the scattering matrix element. Comparing

eqn (25) and (26), we find that the relaxation time is different

from the free collision time of charge carriers by a weighting

factor. Scatterings of different angles contribute differently to

the transport coefficients. Now, the difficulty is to calculate the

scattering matrix element. Here we only consider the dominant

scattering of a thermal electron or hole by acoustic phonons

within the DP theory.

2.2 Deformation potential theory

The DP theory was proposed by Bardeen and Shockley17

in the 1950s to describe the charge transport in nonpolar

semiconductors. It is based on the assumption that local

deformations produced by the lattice waves are similar to
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those in homogeneously deformed crystals. Actually in the

long wavelength limit, the acoustic lattice waves are equivalent

to the elastic waves if viewing crystals as continuous media.

Accordingly effective potentials produced by acoustic waves of

long wavelength are called deformation potentials. Since the

acoustic phonon energy in the long wavelength limit is negligible

compared to the electronic energy, the scatterings are elastic.

Deformation potentials, which are defined as DV= E1D with E1

being the DP constant and D the lattice dilation, can produce

perturbations to electrons in the periodic potential of a crystal

lattice. It is noted that only longitudinal waves contribute to the

deformation. The displacement of an atom at site Rn resulting

from a longitudinal lattice wave of wave vector q is

uðRnÞ ¼
1ffiffiffiffi
N
p eq½aq expðiq � RnÞ

þ a�q expð�iq � RnÞ�
ð27Þ

where N is the number of lattice sites in the unit volume, and eq
and aq are the unit vectors of q and amplitude of the lattice wave.

In the long wavelength limit, the dilation resulting from the

elastic wave is

DðrÞ ¼ @uðrÞ
@r
¼ iffiffiffiffi

N
p q

aq expðiq � rÞ
�a�q expð�iq � rÞ

� 	
ð28Þ

The matrix element for electrons to be scattered from the

Bloch state |ki to k0ij is

Mðk; k0Þj j2 ¼ hk DVj jk0ij j2 ¼ 1

N
E1

2q2 aq
�� ��2 ð29Þ

with q ¼ �ðk0 � kÞ being the selection rule. At high temperatures,

the lattice wave is fully excited, the amplitude of the wave is given

by |aq|
2 = kB/2mq

2v2a according to the equipartition theorem,

where m is the mass per lattice site, and va is the velocity of the

acoustic wave. The thermal averaged scattering matrix element

becomes

Mðk; k0Þj j2 ¼ kBTE1
2

Cii
ð30Þ

where Cii = rv2a = Nmv2a is the elastic constant for longitudinal

strain in the direction of the wave vector q.

Combining eqn (25), (26), and (30) and assuming that the

scattering matrix element is independent of the direction of

wave propagation, the relaxation time due to scatterings from

longitudinal acoustic phonons in the deformation potential

approximation can be expressed as18

1

tk
¼ 2p

�h

kBTE1
2

Cii

X
k0

dðek � ek0 Þð1� cos yÞ ð31Þ

The deformation potential constant for electrons is calcu-

lated as the conduction band energy shift upon dilation, that

for holes is calculated as the valence band energy shift upon

dilation. The elastic constant is calculated as the second-order

derivative of total energy with respect to dilation. The lattice is

usually deformed individually in three crystal directions, and

the scattering matrix element in each crystal direction is

calculated and subsequently averaged. The relaxation time

and all electrical transport coefficients are obtained once band

structures, the deformation potential constant and elastic

constant are determined. It is noted that electrons in real

crystals are subject to scatterings by acoustic phonons, optical

phonons, defects or impurities, the total relaxation time can be

described by Matthiessen’s rule

1

t
¼ 1

tac
þ 1

top
þ 1

timp
þ . . . ð32Þ

The dominant scattering mechanism in a perfect

crystal arises from electron–phonon couplings. At present,

accurate determination of the relaxation time still poses a

challenging task.

2.3 Molecular dynamics simulations of phonon transport

Both electrons and phonons contribute to thermal transport.

For not-so-heavily-doped semiconductors, the lattice thermal

conductivity usually dominates over the electronic contribution.

Modeling phonon transport constitutes a crucial step in theoretical

characterization of thermoelectric transport. In real materials

phonons are scattered by other phonons, defects, impurities, and

boundaries, which gives rise to finite lifetimes or mean free paths

of phonons and in turn finite lattice thermal conductivities.

In perfect crystals, phonon–phonon interactions arising from

anharmonic lattice vibrations are the only scattering mechanism

that contributes to phonon transport.

The methods that can be used to calculate lattice thermal

conductivity fall mainly into two categories. One class of

approaches is based on kinetic theories like Boltzmann trans-

port theroy.19 In applying Boltzmann transport equation

(BTE) to extracting lattice thermal conductivities, one needs

to get such parameters as phonon dispersion relations, phonon

density of states, and phonon relaxation times. However as we

have seen in modeling charge transport, it is challenging to

obtain relaxation times because various scattering mechanisms

have to be included explicitly. Alternatively, molecular

dynamics simulations represent another class of approaches

by which lattice thermal conductivities can be derived directly.

Besides, parameters required by the BTE, such as phonon

dispersion relations and phonon density of states can be easily

obtained from MD simulations. Given accurate classical

force fields developed to describe interactions between atoms,

employing MD simulations to extract lattice thermal conduc-

tivities is straightforward.

Both equilibrium and nonequilibrium MD approaches have

been extensively used to extract lattice thermal conductiv-

ities.20–23 The equilibrium MD method is based on the

Green–Kubo formalism derived from the linear response

theory, in which the thermal conductivity is expressed in terms

of heat current correlation functions.24 However, expressions

for heat current are quite complicated for molecular systems

where many-body interactions are present, which has limited

applications of equilibrium MD approach to simple systems

described by pair-wise or three-body potentials. In our study

organic materials including molecular crystals and conducting

polymers are of interest, so the nonequilibrium MD method is

applicable. In the nonequilibrium MD approach, a heat flux

across the system is generated, and the resulting temperature

gradient is measured after the system has established a steady state.
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The lattice thermal conductivity is subsequently calculated accord-

ing to the Fourier’s law

kL ¼ �
JQ

rT : ð33Þ

Different algorithms have been proposed to generate the

heat flux, including the velocity rescaling method of Jund and

Jullien,25 Ikeshoji and Hafskjold,26 and the velocity exchange

method of Müller-Plathe and Reith.27 The Müller-Plathe

algorithm27,28 was adopted in our study.14 The idea of the

algorithm is to exchange velocities between two particles with

the same mass in different regions of the simulations box. The

unphysical exchange of velocities produces a heat flux, which

in turn induces a temperature gradient in the system. In the

nonequilibrium MD simulations of molecular crystals, the

unit cell was first replicated in three crystal directions a, b,

and c to build up a supercell. The supercell, which constituted

the simulation box, was elongated in the direction of heat

propagation. As an illustration, a simulation box that is

elongated in the direction of lattice vector a is shown in

Fig. 1. Periodic boundary conditions were applied in all three

dimensions. The simulation box was then divided intoN layers

along the a axis, labeled as layer 0, 1, ..., N � 1, respectively,

from left to right. If the simulation box is triclinic, the division

has to be done parallel to the box faces whose normal is in the

direction of a*, so the heat propagates in the direction of a*,

not a. During the exchange of velocities, the hottest carbon

atom in the far left layer, layer 0, and the coldest carbon atom

in the middle layer, layer N/2 were selected. The velocity

swapping was performed at every 500 or 1000 steps in our

simulations. Over time, this induced a temperature gradient in

the system. The temperature of layer 0, which acted as a heat

sink, decreased whereas that of layer N/2, which acted as heat

source, increased. The heat flux imposed was calculated by the

energy transferred per time and area

JQ ¼
1

2At

X
transfers

ð1
2
mv2hot � 1

2
mv2coldÞ ð34Þ

where A is the cross sectional area, m is the mass of carbon

atom, t is the length of simulation. Under periodic boundary

conditions, energy flows in opposite directions, so the energy

transferred should be divided by two in the above equation.

After a steady state was established, the local temperature of

each layer was calculated from the time average of kinetic

energies of the particles in that layer.

An issue concerned with the nonequilibrium MD approach

is that the thermal conductivity depends strongly on the box

length in the direction of heat propagation. This size effect,

arising from phonon scatterings at the boundaries of the

simulation box, is usually non-negligible and can only be

corrected by the extrapolation procedure.22,29 According

to the kinetic theory of thermal conduction, the thermal

conductivity of an isotropic system can be expressed as

kL ¼
1

3

Cv

V
vl ¼ 1

3
rcvv2t: ð35Þ

where Cv and cv are the constant-volume and specific heat

capacities respectively, V is the volume, r is the mass density,

t is the phonon relaxation time, and v and l are the effective

phonon velocity and mean free path respectively. If assuming

that phonon scatterings at the box boundaries act indepen-

dently of scatterings in the true bulk crystal, the phonon

relaxation time from the MD simulations can be decomposed

into29

t�1MD ¼ t�1bulk þ t�1box ð36Þ

where t�1box ¼ v
L=2 and L is the box length. The lattice thermal

conductivity obtained from MD simulations is then related to

the size of the simulation box by22,29

1

kMD
¼ 3

rcvv2
t�1MD ¼

3

rcvv2
ðt�1bulk þ

2v

L
Þ � Aþ B

L
: ð37Þ

We performed nonequilibrium MD simulations with several

box lengths, and extracted the lattice thermal conductivity of

true bulk crystal by extrapolation via eqn (37).

3 Thermoelectric transport in molecular crystals

3.1 Pentacene and rubrene

The Seebeck coefficient in thin films of pentacene and single

crystals of rubrene has been successfully measured using field-

effect devices at temperatures between 295 K and 200 K.30 It

was found that the Seebeck coefficient falls in the range of

0.3–1 mV K�1, and decreases logarithmically with increasing

gate voltage. Thermal transport measurements showed that

room-temperature thermal conductivities of pentacene

thin films and rubrene single crystals were on the order of

0.5 W m�1 K�1.31,32 The large Seebeck coefficients and low

thermal conductivities indicate that pentacene and rubrene

could be potentially good thermoelectric materials.

As a demonstration of the theories introduced above, we

investigate thermoelectric transport in pentacene and rubrene

crystals by a combination of first-principles band structure

calculations and Boltzmann transport theroy in the constant

relaxation time approximation. The relaxation time is taken as

a constant parameter which is derived from the experimental

mobility data. We start from band structure calculations based

on crystal structures of pentacene and rubrene.

3.1.1 Band structures. Pentacene is known to form different

crystal structures under different conditions. In our study, the

crystal structure of the pentacene film grown on SiO2 is

adopted.33 Rubrene crystal has an orthorhombic structure.34

In pentacene and rubrene crystals, an in-plane herringbone

Fig. 1 Schematic representation of the simulation box and the velo-

city exchange algorithm of Müller–Plathe used for nonequilibrium

MD simultaions. Reprinted with permission from ref. 14. Copyright

2011 American Chemical Society.
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arrangement of two inequivalent molecules and a layered

structure in the perpendicular direction are found. The first-

principles band structure calculations are performed by the

projector-augmented wave method (PAW)35,36 with the Perdew–

Burke–Ernzerhof (PBE) generalized gradient approximation

(GGA)37 as implemented in Vienna ab initio simulation package

(VASP).38 The atomic coordinates are optimized on a 6 � 6 � 4

and 4 � 4 � 4 Monkhorst–Pack k-mesh39 respectively for

pentacene and rubrene.

The band structures and density of states are depicted in

Fig. 2. There are two inequivalent molecules in a unit cell of

pentacene and rubrene, so each band in band structures

appears in pair. Band dispersions of the two subbands of the

highest valence band (VB) for pentacene are 468 and 306 meV,

and those of the lowest conduction band (CB) are 274 and

426 meV. The values for rubrene are 345 and 403 meV for VB,

190 and 168 meV for CB. The hole transport behavior is

governed by structural features of the highest VB, and electron

transport is governed by that of the lowest CB. Large band-

width is usually a characteristic feature of high mobility. A

dispersed lower subband and a relatively flat upper subband

are noted in the highest VB of pentacene. In contrast, band

splitting in the highest VB of rubrene is quite small. Conse-

quently, DOS of pentacene exhibits a sharp peak at the top of

VB whereas DOS distribution in rubrene is relatively smooth

at the top of VB. The Seebeck coefficient is determined by

DOS distribution at the Fermi level, sharper distributions

usually represent larger Seebeck coefficients. The calculated

band gap is 0.72 eV for pentacene and 1.12 eV for rubrene.

DFT calculations are known to underestimate band gaps,

but for semiconductors with appreciable gaps, band gap

underestimation usually has minor influence on transport

coefficients because hole transport is essentially determined

by structural features of VB and electron transport is deter-

mined by structural features of CB, gaps between them do not

really matter. Anyway, in subsequent calculations of transport

coefficients, we have shifted energies of CB to match experi-

mental band gaps.

3.1.2 Seebeck coefficients. To calculate transport coeffi-

cients by the Boltzmann transport theory, band energies on

a fine k-mesh, which is 21 � 21 � 11 for pentacene and 13 �
13 � 13 for rubrene, are generated since the transport

distribution kernel of eqn (19) is a summation over k. Convergence

test has been performed with a denser k-mesh. The band

interpolation method proposed by Madsen and Singh40,41 is

used to obtain analytical expressions of band energies that

allow for accurate determination of velocities from band

energies. Calculations of transport coefficients are performed

with the BoltzTraP program that is interfaced to the electronic

structure package VASP.42 To show anisotropic thermo-

electric transport, the transport tensors of interest are output

in three crystal directions.

The transport coefficients and charge carrier concentration

both change with the Fermi level position, as such the transport

coefficients can be obtained as a function of charge carrier

concentration. Field-effect-modulated thermopower measurements

have been realized on crystalline organic semiconductors.30,43 In

these measurements, the influence of a gate insulator on the

Seebeck coefficient is not obvious, suggesting that the underlying

mechanisms should represent intrinsic properties of organic

semiconductors. We thereby compare the Seebeck coefficient

measured in the field-effect transistor (FET) geometry with our

calculations. In the FET structure, field-induced charge carriers

move along the interface between the organic semiconductor

and the dielectric gate, and conduction occurs on the surface

of the semiconductor.44 So we convert charge carrier concen-

tration to charge carrier density on the surface of semiconductors

by multiplying it with the thickness of the conduction channel,

Tint. The value of Tint is taken as 15 Å for pentacene as done in

the literature (ref. 45) and 27 Å for rubrene which corresponds

to approximately two molecular layers. The calculated and

measured Seebeck coefficients as a function of charge carrier

density at room temperature are presented in Fig. 3. The FET

measurements were on holes because only holes can be injected.

Fig. 3 shows that the calculated Seebeck coefficient decreases

Fig. 2 Band structures and DOS of (a) pentacene and (b) rubrene.

The reciprocal coordinates of high-symmetry points are G = (0, 0, 0),

Y = (0.5, 0, 0), B = (0, 0.5, 0), Z = (0, 0, 0.5), A = (0.5, 0.5, 0), D =

(0.5, 0.5, �0.5), and K = (0.5, 0, 0.5), respectively, in pentacene and

G= (0, 0, 0), Y= (0.5, 0.5, 0), Z= (0, 0, 0.5), T= (0.5, 0.5, 0.5), R=

(0, 0.5, 0.5), and S = (0, 0.5, 0), respectively, in rubrene. Reprinted

with permission from ref. 13. Copyright 2009 American Institute of

Physics.
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logarithmically with increasing carrier concentration, in reason-

able agreement with the experimental observations.30

3.1.3 Anisotropic thermal transport. The lattice thermal

conductivities of pentacene thin films and rubrene single

crystals have been measured experimentally,31,32 but the

measurements were made largely in the direction perpendicular

to the molecular packing plane. Actually in molecular crystals

thermal transport is anisotropic as charge transport, and

accurate modeling of phonon transport is important for

prediction of anisotropic thermoelectirc performance in

organic crystals. To study anisotropic thermal transport in

pentacene, we perform nonequilibrium molecular dynamics

simulations with the general amber force field (GAFF)46 and

the OPLS united-atom force field47,48 and with the LAMMPS

simulation package.49 To assess the performance of the two

force fields, we first apply them to predict phonon density of

states and heat capacity of pentacene. Though heat capacity is

underestimated compared to the experimental value,50 both

force fields give reasonable predictions.

In the nonequilibrium MD simulations, the simulation box

is divided into 20 layers. The Müller-Plathe algorithm is

applied to induce a heat current in the system. As an example,

the temperature profile obtained is shown in Fig. 4. The profile

is essentially linear, except for the region near the heat sink,

layer 0, and the heat source, layer 10. The temperature dropoff

at the heat sink and pickup at the heat source are caused by

unphysical exchange of momentum between the two layers, which

is not well balanced by physical heat flow. The temperature

gradient is obtained by linear regression of the data points in

the linear region of the profile. The heat current is calculated

according to eqn (34), and finally the lattice thermal conductivity

is extracted by Fourier’s law.

To obtain the lattice thermal conductivity of a true bulk

system, simulations at several box lengths are performed. The

linear dependence of inverse of the lattice thermal conductivity

on inverse of the box length is confirmed by the simulation

data, as shown in Fig. 5. Linear extrapolation of the data gives

the lattice thermal conductivity of 0.72 W m�1 K�1 in the

direction of a*. The effective phone mean free path can be

derived from the extrapolation procedure as lbulk = vtbulk =

B/2A, which yields a value of 60.3 Å in the direction of a*. The

lattice thermal conductivities in the other two crystal direc-

tions b* and c* are obtained similarly, and the values are 1.1

and 0.61 W m�1 K�1 respectively. The corresponding phonon

mean free paths are 392.6 Å and 42.3 Å. The phonon transport

in the pentacene crystal exhibits an anisotropy of b* > a* >

c*, which is in line with that found in the charge transport,

except that an anisotropy of two is found for the former

whereas an anisotropy of two orders of magnitude for the

latter. In comparison with GAFF, OPLS united-atom force

field tends to underestimate lattice thermal conductivities.

With the united-atom force field, the degrees of freedom of the

system are greatly reduced, and computer times are substantially

saved, but for accurate prediction of lattice thermal conductiv-

ities, the all-atom force field has to be used.

The experimental measurements on pentacene thin films

give a lattice thermal conductivity of 0.51 W m�1 K�1 in the

direction perpendicular to the film plane.31 Our calculations

predict a lattice thermal conductivity of 0.61 Wm�1 K�1 in the

Fig. 3 Seebeck coefficients calculated for pentacene and rubrene at

room temperature as a function of charge carrier density, in compar-

ison with the FET measurements. Reprinted with permission from

ref. 13. Copyright 2009 American Institute of Physics.

Fig. 4 Temperature profile along the a axis for box dimensions 40 �
3 � 2 obtained from nonequilibrium MD simulations. The solid line

represents the linear fit of the data points. The inset shows the time

evolution of temperature of heat sink and source. Reprinted with

permission from ref. 14. Copyright 2011 American Chemical Society.

Fig. 5 Inverse of the lattice thermal conductivity versus inverse of the

box length in the direction of a. Reprinted with permission from

ref. 14. Copyright 2011 American Chemical Society.
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direction of c*, which agrees reasonably well with the experi-

mental value. It should be noted that statistical errors asso-

ciated with the simulations areB5%, and extrapolation to the

infinite-size limit tends to magnify the statistical errors. Mean-

while, our calculations are performed for a perfect crystal

where phonon scatterings contribute exclusively to thermal

transport. In real materials, phonons are also subject to defect

and boundary scatterings, which leads to further reduction

in phonon lifetimes and mean free paths, in turn further

reduction in the lattice thermal conductivity.

In the following we consider two types of defects, namely

isotopic substitutions and vacancies. The lattice thermal

conductivity of pentacene containing 1.1% natural abundance

of 13C is calculated. The substitution sites of 13C are chosen

randomly. Simulations have been performed for box dimen-

sions of 10, 15, 20, 25, 30, and 40 cells in the direction of a.

Fig. 6 shows inverse of the lattice thermal conductivity versus

inverse of the box length for 1.1% 13C and pure 12C pentacene.

We find that the lattice thermal conductivity for pentacene

with natural abundance of 13C is always slightly lower than

that for pure 12C at a certain box length. The extrapolated

lattice thermal conductivity for 1.1% 13C is 0.70 W m�1 K�1, in

comparison with 0.72 W m�1 K�1 for pure 12C. For diamond

the ratio of lattice thermal conductivity for pure 12C to that for

1.1% 13C is 1.45 � 0.16, which was obtained from equilibrium

MD simulations.21 It shows that phonon transport in penta-

cene is much less sensitive to the isotopic substitution than that

in diamond.

The effects of vacancies on lattice thermal conductivities are

also studied. The box dimensions of 10, 20, 30, and 40 cells

respectively in the direction of a and a random distribution of

vacancies are created. Fig. 7 shows that the lattice thermal

conductivity at the fixed box length decreases rapidly with

increasing vacancy concentration, nv. Following the practice of

ref 21, we fit results in Fig. 7 with

ktotðnvÞ ¼
kperf

1þ Cnv a
ð38Þ

and a scaling factor of 1.16, 0.94, 1.16, and 1.11 is obtained for

the box length of 10, 20, 30, and 40 cells respectively. The fit in

eqn (38) suggests that vacancy contribution to the lattice

thermal conductivity obeys a scaling law of kvac p nv
�a. The

scaling factor for pentacene is found to be larger than that for

diamond (B 0.7),21 which suggests that phonon transport in

pentacene is more sensitive to vacancies than that in diamond.

3.1.4 Thermoelectric figure of merit. The Seebeck coeffi-

cient S, electrical conductivity s, thermoelectric power factor

S2s, electronic thermal conductivity ke, and dimensionless

figure of merit zT = S2sT/(ke + kL) at room temperature

have been shown as a function of charge carrier concentration

in Fig. 8. In the constant relaxation time approximation, only

the absolute value of S is obtained since it is defined as the

ratio of two transport coefficients, other transport coefficients

are obtained with respect to t. Fig. 8 shows that at low charge

Fig. 6 Effects of isotopic substitution on the lattice thermal conduc-

tivity. Reprinted with permission from ref. 14. Copyright 2011 Amer-

ican Chemical Society.

Fig. 7 Effects of vacancies on the lattice thermal conductivity. Reprinted

with permission from ref. 14. Copyright 2011 American Chemical Society.

Fig. 8 Transport coefficients calculated for (a) pentacene and

(b) rubrene at room temperature as a function of charge carrier

concentration. The zT values of pentacene in the direction of a are

evaluated based on the empirical relaxation times of 31 fs (solid line)

and 97 fs (dashed line) respectively and the calculated lattice thermal

conductivity of 0.72 W m�1 K–1. The zT values of rubrene are

estimated based on the empirical relaxation times of 12 fs in the

direction of b and 17 fs in the direction of c, and the experimental

lattice thermal conductivity of 0.5 W m�1 K–1. Reprinted with

permission from ref. 13. Copyright 2009 American Institute of Physics.
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carrier concentration, the Seebeck coefficient is large whereas

the electrical conductivity is low, and the opposite trend is seen

at high charge carrier concentration. As a result, there exists

an optimal doping level at which the value of zT is maximized.

To evaluate zT, the relaxation time has to be supplied as a

parameter. The charge carrier mobility with respect to t can be

obtained via the relation s = meN from the calculated s–N
profiles. The relaxation time t is then derived by fitting the

calculated mobilities to the experimental values. The tempera-

ture dependence of hole mobilities in the ultrapure pentacene

crystals has been extracted from the space charge-limited

current measurements.51 At room temperature, a mobility of

11.2 cm2 V�1 s�1 is obtained assuming a uniform current dis-

tribution across the crystal whereas a mobility of 35 cm2 V�1 s�1 is

extracted assuming an anisotropy of conductivity factor of 102

along the a and c axes.51 The relaxation time is then estimated to

be 31 fs and 97 fs respectively by fitting the experimental hole

mobilities to the calculated ones in the crystal direction of a. The

zT value is evaluated based on the electrical transport coefficients

and the lattice thermal conductivity both calculated in the a

direction. It exhibits a peak value of 0.6 with charge carrier

concentration of 2 � 1020 cm�3 for t = 31 fs, whereas a peak

value of 1.4 is exhibited with carrier concentration of 1 �
1020 cm�3 for t = 97 fs. The temperature dependence of both

charge and phonon transport in pentacene has been well

characterized experimentally,31,51 which allows us to evaluate

the temperature dependence of thermoelectric properties.

We find that the thermoelectric figure of merit is enhanced

at low temperatures.

The FET mobility of rubrene extracted from four-probe

measurements of conductivity along the b and c axes is 20 and

8 cm2 V�1 s�1, respectively, at room temperature.52 By fitting

the experimental and theoretical mobilities, a relaxation time

of 12 fs and 17 fs is derived respectively along the b and c axes.

The dimensionless figure of merit is estimated with the lattice

thermal conductivity of 0.5 W m�1 K�1. zT in the crystal

direction of b exhibits a peak value of 0.6 at the carrier

concentration of 8 � 1019 cm�3. In contrast to pentacene,

rubrene shows moderate thermoelectric figure of merit. The

difference in zT between pentacene and rubrene is attributed

mainly to the difference in the Seebeck coefficients of these

materials at the optimal doping level. Excellent thermoelectric

performance requires both large Seebeck coefficients and high

charge carrier mobilities, which in turn require both flat and

dispersed bands around the Fermi level. These distinctive band

features have been observed in pentacene.

3.2 Phthalocyanine and metal phthalocyanines

Phthalocyanine (Pc) is a versatile class of organic semi-

conducting materials with interesting charge transport and optical

properties. Literature reported that the Seebeck coefficients of

phthalocyanines fall into the range of 0.6–1.8 mV K�1,53 and the

charge carrier mobilities in single crystal Pcs by Hall measurement

is on the order of cm2 V�1 s�1.54 The highest field-effect mobility of

holes in thin films of TiOPc was reported to be 10 cm2 V�1 s�1, in

good agreement with our theoretical value.55 The high charge

carrier mobilities and the large Seebeck coefficients suggest that

metal phthalocyanines could be potential thermoelectric materials.

On the basis of the study of pentacene and rubrene in the

constant relaxation time approximation, we push a step

forward to study thermoelectric transport in phthalocyanine

and metal phthalocyanines by calculating the relaxation time

based on the deformation potential theory.56 It should be

pointed out that our computational scheme used to study Pcs

is completely parameter free.

3.2.1 Band structures. Pc is a macrocyclic molecule that

can host metal elements like Cu, Ni, and TiO in its central

cavity. Metal phthalocyanines form various polymorphs in

which the molecular stacking arrangements and alignment can

be profoundly different. We target a-form H2Pc, CuPc, NiPc,

and TiOPc whose crystal structures are quite different, see

Fig. 9. In particular, the crystal structure of TiOPc differs

significantly from that of the other three Pcs. H2Pc, CuPc, and

NiPc are planar molecules, whereas TiOPc has a protruding

titanyl group and adopts a nonplanar square pyramidal

structure. There exist four, two, and one molecules respec-

tively in the unit cell of H2Pc, NiPc, and CuPc, and the closest

molecular stacking is in the direction of b, b, and a with the

lattice constant much shorter than that in other two directions.

The crystal of TiOPc is triclinic with lattice constants comparable

in three crystal directions. The unit cell of TiOPc contains two

inequivalent molecules giving rise to two types of interactions,

the so-called convex- and concave-type dimers.57 The convex and

concave interactions are determined by the relative orientations

of the protruding titanyl groups. The convex interactions involve

TiOPc molecules with the titanyl groups facing each other, while

the concave interactions with the titanyl groups oriented on

opposite sides of the molecules, see Fig. 9(d). As in the study

of pentacene and rubrene, the PBE functional was used for

electronic structure calculations. In atomic coordinates optimiza-

tion, a Monkhorst–Pack k-mesh of 2 � 12 � 2, 8 � 2 � 2, 3 �
12� 4, and 6� 6� 9 was used for H2Pc, CuPc, NiPc, and TiOPc

respectively. The calculated band structures and DOS of H2Pc,

CuPc, NiPc, and TiOPc are displayed in Fig. 10. Molecular

stackings exhibit a critical influence on band structures. Since

there are four, one, two, and two molecules in the unit cell of

H2Pc, CuPc, NiPc, and TiOPc, there exist four, one, two, and

two subbands in the highest VB and lowest CB, which are

highlighted in red. The splittings of subbands are small for

H2Pc and NiPc but notably large for TiOPc because the convex

and concave interactions are quite different. In the case of CuPc

and NiPc, the band width of CB is larger than that of VB, which

Fig. 9 Crystal structures of (a) H2Pc, (b) CuPc, (c) NiPc, and

(d) TiOPc. Reprinted with permission from ref. 56. Copyright 2012

American Chemical Society.
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indicates that electrons might move faster than holes. The

small band width of VB in NiPc gives rise to a sharp DOS,

which is a characteristic feature for a large Seebeck coefficient.

In the case of TiOPc, the band width of VB is larger than

that of CB.

The band gaps of H2Pc, CuPc, NiPc and TiOPc are calcu-

lated to be 1.18, 1.25, 1.34 and 0.91 eV respectively. A

localized state is observed in the band gap of CuPc. The single

electron in this state is immobile so it has no contribution to

charge transport. The trap state was ignored when we calculated

electrical transport properties. CuPc is intrinsically a semiconductor

even if it has an odd number of electrons. As shown before, band

gaps were underestimated by DFT calculations, but the under-

estimation of band gaps should have minimal influence on charge

transport, because it is band width, not band gap, that determines

transport properties.

3.2.2 Relaxation times. In the constant relaxation time

approximation, the relaxation time is often supplied as an

empirical parameter, which can be estimated from experi-

mental measurement of transport coefficients. The evaluation

of relaxation time from first-principles is rarely done in

thermoelectric studies. Indeed, characterization of electron–

phonon interactions is the most challenging task in transport

theory. When the electron–phonon coupling is weaker than the

intermolecular electronic coupling, phonon scattering effect on

electrons can be treated as perturbation. We show first-principles

calculations of relaxation times by the deformation potential

theory in the long wavelength limit.

To consider anisotropic scattering effects, we dilate the

lattice in three crystal directions a, b, and c respectively, and

calculate the deformation potential constant E1 and elastic

constant Cii in three spatial directions. The scattering matrix

element Mðk; k0Þj j2 of electrons by acoustic phonons propagating
in the direction of a, b, and c were computed individually and the

average value was used in eqn (31).

To obtain the deformation potential constant E1 in each

direction, we deformed the lattice in that direction and

calculated band energies in the deformed lattice. The displace-

ment of the bottom of CB upon dilation was used to evaluate

the deformation potential constant for electrons, the displace-

ment of the top of VB was used to evaluate the deformation

potential constant for holes. The deformation potential constant

was defined as E1 = De/(Dl/l0), where De is the band edge shift

due to lattice dilation Dl/l0. When not-so-heavily doped, only

subbands near the band edge of CB and VB contribute to charge

transport. It is noted that band edge is usually more sensitive to

the lattice deformation than other subbands, so band edge shift

usually gives an upper limit of the deformation potential constant

for other subbands. Besides, we assumed that the lowest energy

band was not influenced by dilation, so it was taken as reference

when the band edge shift of CB and VB was evaluated. The

deformation potential constants for electrons and holes in three

crystal directions were summarized in Table 1. It shows that the

deformation potential constants are indeed anisotropic, due to

the anisotropic molecular packings in organic molecular crystals.

The elastic constants were obtained by fitting the total

energy of the deformed lattice to dilation through the relation

DE/V0 = Cii(Dl/l0)
2/2, where DE is the total energy change due

to the dilation Dl/l0. The calculated elastic constants of Pcs

were provided in Table 2. The elastic constants are less

anisotropic than the deformation potential constants, and

the magnitude of elastic constants for Pcs is close to each

other. With the deformation potential constant and elastic

constant, we calculated the relaxation time using eqn (31). In

the calculation of relaxation time and transport coefficients,

band energies on a fine k-mesh of 5 � 31 � 5, 35 � 9 � 9, 7 �
25 � 9, and 9 � 9 � 11 were obtained for H2Pc, CuPc, NiPc,

and TiOPc respectively, and interpolated onto a k-mesh ten

times as dense as the original one. Since both the deformation

potential constant and elastic constant are anisotropic, the

Fig. 10 Band structures and DOS of (a) H2Pc, (b) CuPc, (c) NiPc,

and (d) TiOPc. The reciprocal coordinates of high-symmetry points

are G= (0, 0, 0), Y= (0.5, 0, 0), K= (0.5, 0, 0.5), B= (0, 0.5, 0), Z=

(0, 0, 0.5), A = (0.5, 0.5, 0) and D = (0.5, 0.5, 0.5) respectively.

Reprinted with permission from ref. 56. Copyright 2012 American

Chemical Society.

Table 1 Deformation potential constants in eV for both electrons
and holes in Pcs

E1
a (h) E1

b (h) E1
c (h) E1

a (e) E1
b (e) E1

c (e)

H2Pc 0.60 1.72 0.93 0.35 0.93 2.03
CuPc 0.31 0.31 0.36 0.26 0.23 1.24
NiPc 0.72 0.03 0.53 0.40 0.69 0.35
TiOPc 1.75 0.59 1.49 0.02 0.36 0.71

Table 2 Elastic constants of Pcs in 109 J m–3

Cii
a Cii

b Cii
c

H2Pc 12.1 8.2 15.9
CuPc 7.8 12.0 11.4
NiPc 11.5 13.2 11.9
TiOPc 13.8 14.0 10.1

Table 3 Relaxation times in fs averaged over the highest VB and
lowest CB

t (h) t (e)

H2Pc 50.4 49.5
CuPc 118.7 60.9
NiPc 48.4 231.5
TiOPc 50.6 188.6
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scattering matrix elements are anisotropic. The scattering

matrix element averaged over a, b, and c directions was used

for calculation of the relaxation time. The average relaxation

times of Pcs for electrons in the lowest CB and holes in the

highest VB were collected in Table 3. The magnitude of

relaxation times range from several tens of fs to several

hundreds of fs.

3.2.3 Seebeck coefficients and thermoelectric power factor.

The original BoltzTraP program was designed for use in the

constant relaxation time approximation. We implemented the

relaxation time calculation in the program and obtained

the absolute values of transport coefficients of interest at the

temperature of 298 K. It is found that the Seebeck coefficient

decreases linearly with the Fermi level, and the carrier concen-

tration increases exponentially with the Fermi level. The

Seebeck coefficients of Pcs were displayed in Fig. 11 as a

function of logarithm of charge carrier concentration. A linear

relationship showed up as we have seen in the case of pentacene

and rubrene. The Seebeck coefficients of phthalocyanine crystals

were measured early in the 1960s.53 The a-form H2Pc, CuPc, and

NiPc crystals were reported to possess a Seebeck coefficient of

1.25, 0.91, and 0.97 mV K�1, respectively at 300 K. The

maximum Seebeck coefficients of H2Pc, CuPc, NiPc, and TiOPc

were 1.85, 1.86, 1.49 and 1.38 mV K�1 calculated for holes, and

�1.52,�1.52,�2.19 and�1.47 mVK�1 for electrons, which was

in reasonable agreement with the experimental values. The

electron Seebeck coefficient of NiPc was the largest in magnitude

among the Pcs, which was in accord with our early judgement

based on observation of a sharp DOS near the band edge. The

hole Seebeck of TiOPc was the smallest, which corresponded

to a smooth DOS near the band edge. Overall, difference in

the maximum Seebeck coefficients was not appreciably large

among the phthalocyanine crystals, nor was it between electrons

and holes.

The electrical conductivity increases with increasing carrier

concentration whereas the Seebeck coefficient decreases with

increasing carrier concentration, consequently the thermo-

electric power factor shows a peak value. These features show

that accurate doping can be one of effective ways to control

the thermoelectric performance of a material. Controlled

p-doping of phthalocyanines by strong electron acceptors

was investigated by combined Seebeck and conductivity

measurements.58,59 A novel n-type doping technique by strong

donors was developed to enable the n-type conduction in

metal phthalocyanines.60 The transport coefficients were

displayed in Fig. 12 as a function of carrier concentration. It

shows that the power factors of n-doped phthalocyanines are

higher than those of p-doped, suggesting that all phthalo-

cyanine crystals studied are n-type thermoelectric materials.

The maximum power factors of H2Pc, CuPc, NiPc, and TiOPc

were 36.0, 81.7, 292.8, and 93.1 W cm�1 K�2, respectively

when n-doped. The optimal doping levels predicted on the basis

of first-principles calculations can provide useful guidance to

control experimental conditions in order to achieve the best

thermoelectric performance of a material.

3.2.4 Best thermoelectric performance. To fully characterize a

thermoelectric material, accurate modeling of phonon transport

is necessary. We have shown for pentacene that nonequilibrium

MD approach with the GAFF can give a reliable prediction of

the lattice thermal conductivity. It has been noticed that the

thermoelectric performance of molecular crystals is profoundly

anisotropic, and the largest power factor is found in the crystal

direction of b, a, b, and a for H2Pc, CuPc, NiPc, and TiOPc

respectively. The best thermoelectric performance is actually

Fig. 11 Seebeck coefficients as a function of logarithm of charge

carrier concentration. The Seebeck coefficients of holes are represented

by solid lines and those of electrons by dashed lines. Reprinted with

permission from ref. 56. Copyright 2012 American Chemical Society.

Fig. 12 Electrical transport coefficients calculated for (a) H2Pc,

(b) CuPc, (c) NiPc, and (d) TiOPc. Reprinted with permission from

ref. 56. Copyright 2012 American Chemical Society.
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found in the direction in which the crystal shows the closest

molecular packing, and in that direction the lattice thermal

conductivity is the largest. Since we are only interested in

thermoelectric transport in these directions, we calculate the

lattice thermal conductivity of H2Pc in the direction of b*. The

value is 2.1 W m�1 K�1 from nonequilibrium MD simulations

with the GAFF. We notice that the lattice constant of three

metal phthalocyanines in the direction of closest packing is

comparable to or larger than that of H2Pc, so we take the lattice

thermal conductivity of H2Pc as an upper limit of that of other

Pcs, and use it in the evaluation of zT in the direction of best

thermoelectric performance. The dimensionless figure of merit

at 298 K versus carrier concentration is shown in Fig. 13. As we

have seen in power factors, all Pcs can reach a maximum zT

whether n-doped or p-doped, but apparently the dimensionless

figure of merit is higher when n-doped. Along the b axis, the zT

value of H2Pc can reach 0.5 with a doping level of �2.0 �
1020 cm�3, in the case of CuPc, along the a axis zT can reach

0.8 with a doping level of �3.5 � 1020 cm�3. The zT value of

NiPc shows a peak value of 2.5 at a carrier concentration of

�1.5 � 1020 cm�3, and that of TiOPc has a peak value of 0.6 at

a carrier concentration of �1.0 � 1020 cm�3. NiPc is the best

n-type thermoelectric material among all the Pcs we studied,

which is in line with the observation that NiPc has the largest

electron Seebeck coefficient among the Pcs.

4 Thermoelectric transport in conducting polymers

Conducting polymers such as polyacetylene, polypyrroles,

polyanilines, polythiophenes, and polycarbazoles, as potential

thermoelectric materials have attracted great attention and

intensive experimental investigation, see a recent review8 and

references therein. Optimization of the thermoelectirc figure of

merit has been shown by the accurate control of the doping

level, and a zT value of 0.25 at room temperature was recently

reported for poly(3,4-ethylenedioxythiophene) (PEDOT)

nanowires.9 As a final application of the theories introduced,

we investigate thermoelectric transport in a single poly-

(3-hexylthiophene) (P3HT) chain. The repeating unit of a

one-dimensional (1D) P3HT chain is shown in Fig. 14 The

lattice constant in the chain direction b and atomic coordinates

are optimized by the PAW method with the local density

approximation (LDA) on a 1 � 4 � 1 k-mesh. The unit cell

lengths in the in-plane a and out-of-plane c directions are fixed

at 40 Å and 20 Å respectively, which are large enough to avoid

inter-chain interactions. The optimized b parameter is 7.74 Å,

in good agreement with the experimental values of 7.66 and

7.75 Å. The preference of LDA over GGA functional is based

on our experiences that LDA optimization of the lattice

constants for molecular crystals usually provides a better

agreement with the experimental values than GGA func-

tionals. Actually for covalently bonded molecular chains,

differences arising from functionals are insignificant, as found

in our early study of single-layer graphene sheet.61 We also

found that for double-layer graphene sheet where noncovalent

interactions exist, LDA optimized inter-layer distance was in

excellent agreement with the experimental value, and it even

performed better than PBE-D functional with dispersion

correction.61 The band structures and DOS of P3HT are

displayed in Fig. 15. The band widths of CB and VB are

1.54 eV and 2.03 eV respectively. The band gap is 1.04 eV at the

G-point. For 1D system, DOS is converted to the linear density

via multiplying the cross-sectional area by the volumetric

density. The bottom of CB and the top of VB are relatively

flat, giving rise to sharp DOS distributions at the band edges.

To calculate the deformation potential constant and elastic

constant, the lattice is deformed in the direction of b with

dilation of 0.5%, 1%, 1.5%, and 2% minus and plus respec-

tively. The elastic constant is obtained by a parabolic fit of the

total energy to the dilation, as shown in Fig. 16 (a), which

gives a value of 10.1 � 109 J m–3. The linear fit of the band

edge shift to the dilation, shown in Fig. 16 (b) yields the

deformation potential constant of 9.69 eV for electrons and

Fig. 13 Dimensionless figure of merit estimated for H2Pc, CuPc,

NiPc, and TiOPc in the direction of b, a, b, and a respectively. The

lattice thermal conductivity of 2.1 W m�1 K–1, calculated in the

direction of b for H2Pc was used in the estimation. Reprinted with

permission from ref. 56. Copyright 2012 American Chemical Society.

Fig. 14 The repeating unit of P3HT chain. Fig. 15 Band energies and DOS of single P3HT chain.
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11.3 eV for holes. The transport coefficients are calculated on a

2 � 800 � 2 k-mesh. For the 1D system, conductance instead

of conductivity must be used. The electrical and thermal

conductance at 298 K are displayed in Fig. 17 as a function

of linear density of carriers. The Lorentz number, defined as

L = ke/(sT), is found to be smaller than p2


3

� �
kB=eð Þ2,

violating the Wiedemann–Franz law.

To compare the thermoelectric performance of the single

polymer chain to other systems, we use the crystal lattice

parameters of P3HT, a = 33.26 Å and c = 7.77 Å, to define

the cross-sectional area. The electrical and thermal conductiv-

ities are obtained, and shown in Fig. 18 as a function of linear

density of carriers. The peak value of power factors is 1.7 �
10�5 W cm�1 K�2 for electrons, slightly higher than that for

holes, which is 1.4 � 10�5 W cm�1 K�2. It is noted that

thermoelectric properties of single molecular chains of P3HT

and PEDOT have been studied by Yang and co-authors with

the small-polaron model.62 The model relies on a variety of

physical parameters, including intersite coupling, electro-

n–phonon interaction, dielectric constant, chemical potential,

and temperature. Only thermoelectric properties for the

optical phonon induced polarons were considered. It is

surprising to see that power factors predicted based on our

band model do not differ much from those obtained by

Holstein’s small-polaron model, considering that these two

models and parameters adopted are profoundly different.

For most polymer materials, phonon contribution to the

thermal conductivity falls in the range of 0.1–1.0 W m�1 K�1

for bulk materials. As in ref. 62, we take the lattice thermal

conductivity to be 0.2 W m�1 K�1 and estimate the dimension-

less figure of merit of P3HT. When it is p-doped, the peak value

of zT is 1.6 with the doping level of 4 � 105 cm�1, and when it

is n-doped the peak value of zT is 1.4 with the doping level of

–4 � 105 cm�1.

5 Conclusions and outlook

To conclude, we have developed a parameter free computa-

tional scheme to characterize thermoelectric figure of merit of

organic materials including closely packed molecular crystals

and single polymer chains. The phonon transport is modeled

using the nonequilibrium MD approach with appropriate

atomistic force fields that describe phonon–phonon inter-

actions. The modeling of charge transport is based on the

delocalized single electron picture. The electron is assumed to

move in the periodic potential of the crystal lattice and the

effective potential of other electrons. In the movement the

electron is scattered by lattice waves, which in the long wave-

length limit can be modeled by the deformation potential theory.

Fig. 16 (a) Total energy and (b) band edge shift upon lattice dilation.

Fig. 17 Electrical conductance G and thermal conductance U calcu-

lated for P3HT as a function of linear density of carriers.

Fig. 18 Electrical transport coefficients calculated for a single P3HT

chain as a function of linear density of carriers. The dimensionless

figure of merit was estimated with the lattice thermal conductivity of

0.2 W m�1 K�1.
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With these approximations, the band-like description of

charge transport requires no empirical parameters. All the

electrical transport coefficients can be derived from first-

principles electronic structure calculations. We have applied

the theories and computation schemes to study thermoelectric

transport in model systems such as molecular crystals with

high charge carrier mobilities and one-dimensional polymer

chains. The doping effect on the optimization of thermo-

electric performance is focused upon. In particular, it is

interesting to relate structural features of CB and VB to

transport coefficients directly. In these studies, we have found

that large band widths and sharp DOS are usually characteristic

features of high thermoelectric power factors, which has been

confirmed by calculations of transport coefficients.

It should be noted that theories that can be used to describe

charge transport in organic materials have been debated for a

long time. If the electronic coupling is larger than the electron–

phonon coupling, a band-like model is appropriate in which

charge carriers are in extended electronic states and scatterings

by phonons are treated as perturbations. If the electron–phonon

coupling is much larger than the electronic coupling, charge

carriers can be entirely localized on one site, and a hopping model

that describes charge transport as electron transfer between

neighboring sites is recommended. So the charge transport

mechanism in organic materials is really dependent on molecular

structures, inter-molecular packings, and temperature. For

closely-packed conjugated molecular crystals, a band picture

often shows up in the low temperature regimes, and a hopping

picture in the high temperature regimes. The band and hopping

descriptions of charge transport are two limiting cases. Our

modeling of thermoelectric transport is based on the band

picture and provided predictions only in the band limit. The

hopping model is based on two molecular parameters, namely

inter-molecular transfer integral that characterizes the electro-

nic coupling and intramolecular reorganization energy that

characterizes the electron-vibrational coupling. The hopping

model is simple yet has been proved useful in the design of

materials with high charge carrier mobilities.63 It is therefore of

great interest to develop hopping models for study of thermo-

electric transport in organic materials. We have never seen such

kind of work to the best of our knowledge.

In between the band and hopping limits there exists the

polaron model, which views charge transport as polaron

transport. The polarons are also known as phonon-dressed

charge carriers. Hannewald and co-authors have derived

based on the Holstein Hamiltonian a general mobility expres-

sion that covers the whole temperature range, from the

Boltzmann equation for band transport, through Holstein’s

small-polaron theory, to Marcus’ electron transfer theory.64

Thermoelectric transport coefficients of Holstein’s small

polaron model have been derived early in the 1960s using the

Kubo formula.65 Recently, Yang and co-authors investigated

thermoelectric properties of qausi-one-dimensional molecular

nanowires using Holstein’s small polaron model.62 The model

relies on a few physical parameters such as inter-site coupling

and electron–phonon interaction, which have to be derived by

first-principles or empirically.

For the purpose of material design, a quantitative prediction

of electrical transport coefficients is required. A challenging task

is to characterize electron–phonon interactions at the first-

principles level irrespective of which transport model is

applied. A remarkable progress has been made in the density

functional perturbation theory (DFPT)66 within the frame-

work of density functional theory. DFPT treats phonons as

perturbations to the self-consistent potential produced by

electrons and the nucleus. However, taking into account all

phonon branches and phonon dispersions is still not compu-

tationally affordable. So far we have only seen applications of

DFPT to simple systems such as graphene sheets for the

calculation of electron–phonon couplings. Recently, a compu-

tational scheme taking advantage of the localized Wannier

functions for both electrons and lattice vibrations was

proposed,67 and was applied to potassium-doped picene.68

We also noticed that a charge patching method has been

developed to calculate the electronic states for systems with

tens of thousands atoms.69 The method was used to calculate

the electron–phonon couplings of disordered polythiophene

bulk materials.70 These advances will promote the fundamental

understanding of charge transport in organic materials, and

make modeling organic thermoelectric materials at the first-

principles level possible.
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