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ABSTRACT: We propose a combined computational scheme to predict the thermoelectric properties of organic
semiconductors, taking α-form phthalocyanine crystals H2Pc, CuPc, NiPc, and TiOPc as examples. This completely
parameter-free approach combines first-principles band structure calculations, Boltzmann transport theory, deformation potential
theory for electron−phonon coupling, and nonequilibrium molecular dynamics for heat transport. We abandon the constant
relaxation time approximation commonly practiced in the literature. Instead, we calculate it from first principles with the
deformation potential approximation. The obtained Seebeck coefficients are in good agreement with experimental results,
validating our treatment for relaxation time. From the calculated thermoelectric figure of merit (ZT) value, we show that
phthalocyanine crystals could be excellent thermoelectric materials when n-doped, with the highest ZT value of 2.5 in NiPc at a
doping level of −1.5 × 1020 cm−3.

I. INTRODUCTION

Thermoelectric materials interconvert heat energy and electrical
energy. Therefore, thermoelectric modules can be built as
either power generators or coolers. The energy conversion
efficiency of a material is determined by its dimensionless
thermoelectric figure of merit ZT = S2σT/κ, where σ and κ are
the electrical and thermal conductivity and S is the Seebeck
coefficient. It indicates that an efficient thermoelectric material
must be good at conducting electricity but not heat. That way, a
temperature gradient across the material can be maintained
instead of the quickly equalizing temperature within the bulk of
material. So, in the design of thermoelectric materials, one
needs to suppress phonon transport and to enhance electron
transport. The concept of a phonon glass electron crystal has
been proposed in the search for novel thermoelectric
materials.1 Compounds that have been investigated for
thermoelectric applications include skutterudites, half-Heusler
alloys, clathrates, and pentatellurides. The best bulk thermo-
electric materials available are bismuth telluride alloys as far as
their efficiency is concerned. However, the application of such
materials is restricted due to the fact that they are toxic and
expensive. Recent advances in thermoelectrics demonstrate that
an enhanced Seebeck coefficient and reduced thermal
conductivity can be achieved in nanostructured materials2,3

and nanocomposites.4−6 Thermoelectric properties of low-
dimensional carbon materials such as carbon nanotubes7 and
nanowires8 have also been studied. Carbon nanotubes conduct
electricity and heat equally well, but when wrapped by
conducting polymers, the thermal conductivity of nanotubes
is reduced to the level of polymers and the Seebeck coefficient
remains almost the same.9

Compared to inorganic materials, organic electronic
materials are usually poor heat conductors, meeting at least
one requirement for efficient thermoelectric performance.

Conducting polymers have been studied for thermoelectric
applications, such as polyacetylene,10,11 polypyrroles,12 polyani-
lines,13,14 polythiophenes,15 and poly(2,7-carbazole)s.16,17

Enhanced thermoelectric power and electrical conductivity
have been observed more in poly(3,4-ethylenedioxythiophene)
(PEDOT) nanowires than in thin films.18 The highest
thermoelectric figure of merit reported is 0.25 in PEDOT.19

In addition to conjugated polymers, thermoelectric properties
of thin films of small molecules such as pentacene have been
studied by field-effect transistors20 and by the means of
doping.21

Theoretical and computational efforts have been devoted to
the design of and the search for novel thermoelectric
materials.22−25 Mahan and Sofo26 derived a transport
distribution function to give the largest figure of merit and
found that a narrow distribution of the energy of the transport
electrons is needed for maximum thermoelectric efficiency.
Madsen.27 proposed an approach that combines first-principles
band structure calculations with the Boltzmann transport
theory to study the thermoelectric properties of LiZnSb.
Zhang and collaborators28,29 evaluated the thermoelectric
performance of half-Heusler compounds and the filled
skutterudites. Nevertheless, very little theoretical work has
been performed to predict the thermoelectric performance of
organic electronic materials. Earlier, we studied the thermo-
electric properties of pentacene and rubrene crystals based on
the Boltzmann transport theory, and our results show that a
peak figure of merit of 0.5−0.8 can be obtained for the p-doped
pentacene crystal.30 The Boltzmann transport theory is
applicable when the intermolecular electronic coupling is
stronger than the electron−phonon interaction. When the
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electron−phonon interaction is comparable to or even larger
than the intermolecular coupling, the Holstein’s small polaron
model is appropriate. Recently, Wang et al.31 studied the
thermoelectric properties of molecular nanowires based on a
rigorous evaluation of the Kubo formula using Holstein’s small
polaron model. The model relies on a few physical parameters
that can be derived either experimentally or theoretically.
In this work, we focus on the thermoelectrics for organic

materials predicted from theoretical chemistry. We investigate
the thermoelectric properties of phthalocyanine (Pc) and its
metal complexes MPc (M = Cu, Ni, and TiO) crystals.
Phthalocyanine is a versatile class of organic semiconducting
materials with interesting charge transport and optical proper-
ties.32,33 Early studies reported that the Seebeck coefficient of
phthalocyanines falls into the range of 0.6−1.8 mV/K,34 and
the Hall measurement demonstrated that the mobility in single
crystal phthalocyanines is on the order of cm2/(V s).35 The
highest field-effect mobility of holes in thin films of TiOPc is
reported to be 10 cm2/(V s), in nice agreement with our
theoretical value.36 The high charge carrier mobilities and the
large Seebeck coefficients suggest that metal phthalocyanines
could be potential thermoelectric materials. Our current
research aims at theoretically characterizing thermoelectric
properties of phthalocyanine crystals and disclosing a way to
optimize the thermoelectric efficiency.
Charge transport in organic materials can be described by

either the hopping model or the band model, depending on the
magnitude of the electron−phonon coupling with respect to
the intermolecular coupling. Often, one employed two
parameters, the molecular charge reorganization energy (λ)
representing electron-intramolecular vibration coupling versus
the intermolecular electronic coupling V (or called hopping
integral t). In the case of V > λ, a band model is more
appropriate. Only when V ≪ λ can the localized charge
hopping picture be adopted, which suits a large class of organic
molecules.37 From quantum chemistry calculations, it was
found that the intermolecular electronic coupling for
phthalocyanines can be as large as 0.143 eV, even larger than
the intramolecular charge reorganization energy (∼0.08 eV).36

Thus, in this work, we employ the band description for the
electronic structure for phthalocyanines. The transport
coefficients are calculated by the Boltzmann transport theory
in the relaxation time approximation, with the relaxation time
calculated by deformation potential theory.38 The heat
transport by phonon is calculated by a nonequilibrium
molecular dynamics (NEMD) simulation coupled with a
general amber force field (GAFF),39 which we have shown to
reproduce the experimental thermal conductivity for pentacene
well.40

II. METHODOLOGY
Band Structure Calculations. We perform the first-

principles calculations with the projector-augmented wave
(PAW) method41,42 as supplemented in the Vienna ab initio
simulation package (VASP).43,44 The Perdew−Burke−Ernzer-
hof (PBE) functional in the generalized gradient approximation
(GGA) is applied. The atomic positions in the crystal are
further optimized with the quasi-Newton method with the
lattice vectors fixed. The energy convergence criterion for the
self-consistent cycle is set to be 10−4 eV. In the ionic relaxations
and charge density calculations, Monkhorst−Pack k-meshes45

of 2 × 12 × 2, 8 × 2 × 2, 3 × 12 × 4, and 6 × 6 × 9 are used for
H2Pc, CuPc, NiPc, and TiOPc, respectively. The smearing

method used for these calculations is the tetrahedron method
with Blöchl corrections. For the calculations of transport
coefficients, band energies on a much denser k-mesh are
needed. The k-meshes for H2Pc, CuPc, NiPc, and TiOPc are 5
× 31 × 5, 35 × 9 × 9, 7 × 25 × 9, and 9 × 9 × 11, respectively,
which amount to a total of 388, 1418, 416, and 446 points in
the irreducible Brillouin zone. The band energy calculations are
not self-consistent; instead, they are based on the charge
density obtained from the previous self-consistent calculations
on a less dense k-mesh. The Gaussian smearing method with a
width of 0.05 eV is applied in these calculations.

Boltzmann Transport Theory. The Boltzmann transport
theory is applied to calculate properties related to the charge
carrier transport.46 The Boltzmann transport equation describes
the time evolution of the charge carrier distribution function in
the external fields, such as the electric or magnetic field and the
thermal gradient. The charge carriers are subject to the phonon
and defect scatterings. These scattering events restore the
charge carrier distribution to the original equilibrium state.
Relaxation time approximation is usually invoked. The steady-
state charge carrier distribution function is then obtained by
solving the Boltzmann transport equation. To study doping
effects in the thermoelectric materials, we assume that the band
structure is not affected by doping and that both n- and p-
doping are simulated by a rigid shift of the Fermi level in the
distribution function when evaluating the transport coefficients.
This rigid band approximation is suitable for low field and low
charge carrier concentrations. In the Boltzmann transport
theory, the movement of an electron is treated semiclassically,
and the group velocity of an electron in a specified band is
given by
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where ε(i, k) is the ith energy band at point k, kα is the α
component of wave vector k with α the Cartesian index. From
the first-principles band structures we obtain the group
velocities. Next, we calculate the energy projected transport
distribution (TD) tensor
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where τ(i, k) is the relaxation time, α and β are the Cartesian
indices, N is the total number of k points sampled, and e is the
elementary charge. The electrical transport tensors are defined
as

∫σ μ σ ε
ε μ

ε
ε=

Ω
−

∂
∂αβ αβ

⎡
⎣⎢

⎤
⎦⎥T

f T
( , )

1
( )

( , , )
d0

(3)

∫μ
σ μ

σ ε ε μ

ε μ
ε

ε

=
Ω

−

× −
∂

∂

αβ
αβ

αβ

⎡
⎣⎢

⎤
⎦⎥

S T
eT T

f T

( , )
1

( , )
( )( )

( , , )
d0

(4)

∫κ μ σ ε ε μ
ε μ

ε

ε

=
Ω

− × −
∂

∂αβ αβ

⎡
⎣⎢

⎤
⎦⎥T

eT

f T
( , )

1
( )( )

( , , )

d

0 2 0

(5)

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct3004436 | J. Chem. Theory Comput. 2012, 8, 3338−33473339



where Ω is the volume of the unit cell and f 0 is the equilibrium
distribution function, i.e., the Fermi−Dirac distribution
function dependent on temperature T and chemical potential
μ. It is noticed that the electrical conductivity, the Seebeck
coefficient, and the thermal transport coefficient are related to
integrals of the zeroth, first, and second order moments of the
TD tensor, respectively.47 The thermal conductivity contrib-
uted by electrons is calculated as

κ κ σ= − S Te
0 2

(6)

The first-principles band energies calculated on a fine k-mesh
are fitted using the method proposed by Madsen;27 then, the
velocities on an interpolated k-mesh are calculated. The TD
function and its Fermi integrals as given in eqs 3−5 are then
evaluated. The procedures to calculate the electrical transport
coefficients are implemented in the BoltzTraP program,48

which has been interfaced to the electronic structure package
VASP.28 The relaxation times of charge carriers due to phonon
scatterings are estimated by the deformation potential theory as
presented below.
Deformation Potential Theory. In the application of the

Boltzmann transport theory, the relaxation time τ(i, k) in eq 2
is essential, arising from scattering. It was usually supplied as an
empirical parameter, very often estimated from an exper-
imentally measured transport coefficient,49 making the
computational approach empirical. In our approach, the
relaxation time τ(i, k) is evaluated by the deformation potential
theory for treating the electron−phonon scatterings.38 In fact,
such an approach has been successfully applied in the
calculation of charge carrier mobilities in oligoacene crystals,50

graphene,51 and graphdiyne.52 The deformation potential
theory describes the electron-acoustic phonon interactions on
the assumption that local deformations produced by the lattice
waves are close to those in the homogeneously deformed
crystals. The scattering probability for electrons from the k state
to the k′ state can be written as
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where E1 is the deformation potential constant that represents
the energy band shift caused by the crystal lattice deformation,
and Cii is the elastic constant in the direction of propagation of
the lattice wave. Note that only scatterings contributed by
longitudinal acoustic phonons are considered. The relaxation
time can be expressed by the scattering probability
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where δ[ε(i, k) − ε(i, k′)] is the Dirac delta function and θ is
the angle between k and k′. In Bardeen and Shockley’s
treatment, it is assumed that scattering is isotropic and the
matrix element of interactions M(k, k′) is independent of k and
k′. Apparently, this is not true for organic molecular crystals in
which the electron−phonon scatterings and the charge carrier
transport are anisotropic. To account for the anisotropic
scatterings, we simply deform the crystal in three lattice
directions and average the scattering probabilities calculated for
the three directions.

Phonon Transport. The thermoelectric figure of merit is
determined not only by the charge carrier transport, i.e., the
electrical transport coefficients, but also by the phonon
transport through the lattice thermal conductivity. To evaluate
this quantity, we apply the nonequilibrium molecular dynamics
method.39 In the NEMD method, a nonequilibrium steady state
is prepared by applying a temperature gradient or introducing a
heat flux to the system. The lattice thermal conductivity is
defined as

κ = −
∇

J
TL (9)

where J is the heat flux that represents the amount of energy
transferred per time and cross-sectional area, κL is the lattice
thermal conductivity, and ∇T is the temperature gradient. The
classical force field is used to describe the inter- and
intramolecular interactions that account for the phonon
scatterings due to anharmonic lattice vibrations. The simulation
box in the direction of heat flow should be large enough to
establish the local thermal equilibrium and a sufficient
temperature gradient. The periodic boundary conditions have
been applied in three directions. The heat flux is generated by
the velocity-exchange scheme proposed by Müller-Plathe and
Reith.53 That is, the simulation box is divided into N slabs,
labeled as slab 0, 1, ..., N − 1. The velocities of carbon atoms in
slab 0 and N/2 are exchanged every few steps in the simulation.
To be specific, the hottest carbon atom in slab 0 and the coldest
carbon atom in slab N/2 are selected, and their velocities are
exchanged. This way, a constant heat flow from slab N/2 to slab
0 is induced, which results in a temperature gradient. The heat
flux imposed in the NEMD simulation can be obtained by
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where A is the cross-sectional area, m is the mass of a carbon
atom, and t is the duration of energy transfer. The simulations
are performed with the LAMMPS package.54 The GAFF is used
to describe the bonded and nonbonded interactions in H2Pc.
The time step used to integrate Newton’s equations of motion
is set to be 1 fs, and the total NEMD simulation time is 5 ns.
The long-range electrostatic interactions are treated by the
Ewald/n method as implemented in LAMMPS. To equilibrate
the system to the desired temperature, the NEMD simulation is
preceded by 0.1 ns of simulation at 300 K where the Berendsen
thermostat is applied. The NEMD simulation is carried out for
a finite periodic box, and the calculated thermal conductivity
has a strong dependence on the box size. This size effect is due
to the phonon scatterings at the boundaries of the simulation
box. To correct for the size effect, we apply a simple
extrapolation scheme. The thermal conductivity obtained
from the MD simulation is related to the box size by55,56
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where cv is the specific heat capacity, ρ is the mass density, V is
the volume, and τMD and τbulk are the phonon relaxation time in
the MD simulation and in the true bulk crystal, respectively.
The equation shows that the reciprocal of κMD has a linear
relationship with respect to the reciprocal of the box length. We
perform NEMD simulations with several box lengths, and then
fit the κMD

−1 ∼ L−1 curve to obtain the κ value at the infinite
box length.
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III. RESULTS AND DISCUSSION
Band Structures. Phthalocyanine is a macrocyclic com-

pound that can host metal elements in its central cavity. Metal
phthalocyanines are known to form various polymorphs in
which the molecular stacking arrangements and alignment are
profoundly different. The current investigations are focused on
α-form H2Pc, CuPc, NiPc, and TiOPc crystals (Figure 1). The
lattice constants of these compounds are listed in Table 1. The

unit cell of H2Pc and NiPc is monoclinic with four and two
inequivalent molecules in it, and the closest molecular stacking
is in the direction of b. The unit cell of CuPc contains one
molecule, and the closest molecular packing is in the direction
of a. The unit cell of TiOPc is triclinic. It contains two
inequivalent molecules that give rise to two types of
interactions, namely convex- and concave-type dimers.58

H2Pc, CuPc, and NiPc are planar molecules, but in TiOPc
the protruding titanyl groups force the usually planar structure
of the phthalocyanine to adopt a nonplanar square pyramidal
structure. The convex and concave interactions are determined
by the relative orientations of the protruding titanyl groups.
The convex interactions involve TiOPc molecules with the
titanyl groups facing each other, while the concave interactions
with the titanyl groups oriented on opposite sides of the
molecules, see Figure 1d. The band structures and the density
of states (DOS) of H2Pc, CuPc, NiPc, and TiOPc are displayed
in Figure 2. It is noted that molecular stackings exibit a
profound influence on the band structures. The band gaps of
H2Pc, CuPc, NiPc, and TiOPc are calculated to be 1.179, 1.253,
1.337, and 0.912 eV, respectively. A localized state is observed
in the band gap of CuPc. The single electron in this state is
immobile, so it does not contribute to the charge carrier
transport. This trap state is ignored when the electrical
transport properties are calculated. The contribution to the
state is analyzed by the projected DOS in Figure 3. It can be
seen that the largest contribution is from the d state of the

central copper atom. The calculated DOS diagram of CuPc is
compatible with the resonant soft X-ray emission experimental
studies reported in ref 56. CuPc is an intrinsic semiconductor
even if it contains an odd number of electrons. The
experimental band gap of CuPc is about 2.0 eV,35 larger than
the calculated one. It has been known that the DFT calculations
tend to underestimate the band gaps. Bred́as and Norton58

investigated the band structures of TiOPc with the PAW
method and the GGA PW91 functional. They reported a band
gap of 0.92 eV, which is quite close to our result of 0.912 eV
using the PBE functional. The experimental band gap is 1.72
eV, obtained with cyclic voltammetry methods performed
under inert conditions.59 The underestimation of band gaps
should have little influence on the charge carrier transport,
since it is the bandwidth that determines the transport
properties. Though underestimated, there is still an appreciable
gap between the conduction and valence bands; therefore when
calculating the transport coefficients of electrons, contributions
from the valence bands are negligible because they are far from
the Fermi level.
The charge carrier transport of holes is governed by the

structural feature of the highest valence band, and that of
electrons is governed by the lowest conduction band. Large
bandwidth is usually a characteristic feature of a high mobility.
There are four, two, and two inequivalent molecules in the unit
cell of H2Pc, NiPc, and TiOPc, respectively, so each band in the
band structures of H2Pc appears in a quartet and that of NiPc
and TiOPc appears in a pair. The splitting of the sub-bands is
small for H2Pc and NiPc; that for TiOPc is notably large. The
band widths of the valence and conduction bands in high
symmetry directions are summarized in Table 2. The valence
and conduction bands of H2Pc exhibit a comparable band
dispersion. The width of the conduction band is larger than that
of the valence band for CuPc and NiPc, suggesting that the
electron mobility is higher than the hole mobility, so CuPc and
NiPc are expected to be n-type semiconductors. In contrast,
TiOPc exhibits a comparably larger band dispersion at the
valence band than the conduction band. The bandwidth of
TiOPc in the direction of a along which the crystal has the
largest orbital overlap is larger than that in the other two
directions. The valence band of NiPc exhibits small band
dispersions showing weak electronic couplings between the
molecules in the crystal. Sharp DOS is a characteristic feature

Figure 1. Structures of α-form (a) H2Pc, (b) CuPc, (c) NiPc, and (d) TiOPc crystals.

Table 1. Lattice Constants of Phthalocyanine Crystals

a (Å) b (Å) c (Å) α β γ

H2Pc 26.121 3.797 23.875 90° 94.16° 90°
CuPc 3.805 12.959 12.043 90.64° 95.26° 90.72°
NiPc 19.9 4.71 14.9 90° 121.9° 90°
TiOPc 12.166 12.584 8.641 67.86° 95.03° 96.28°
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for large Seebeck coefficients, as shown in our previous study
on pentacene and rubrene crystals.30

Relaxation Time. The relaxation time measures how
quickly an electron restores to the equilibrium distribution
via scatterings by phonons, impurities, or other defects. Usually,
one employs constant relaxation time approximation, which
makes the theory empirical.49 We abandon such approximation
by calculating the electron−phonon scatterings. We estimate
the matrix element of the interactions between electrons and
longitudinal acoustic phonons and calculate the relaxation time
with the deformation potential theory. To account for the
anisotropic scatterings in organic semiconductors, we dilate the
lattice in three crystal directions, a, b, and c, and calculate the
deformation potential constant E1 and the elastic constant Cii in
three spatial directions. The scattering probabilities |M(k, k′)|2

of electrons by the acoustic waves in the direction of
propagation a, b, and c are averaged and used in the summation
over state k′ of eq 8.
To obtain the deformation potential constant E1 in each

direction, we calculate band energies of the lattice deformed in
that direction. The displacement of the bottom of the
conduction band is used to calculate the deformation potential
constant for electrons, and that of the top of the valence band is
used for holes. The deformation potential constant is defined as
E1 = Δε/(Δl/l0), where Δε is the band edge shift of the
conduction and valence bands due to the lattice dilation Δl/l0.
When not heavily doped, only sub-bands that are near the band
edge of the conduction and valence bands contribute to the
transport. Since the band edge is usually more sensitive to the
lattice deformation than other sub-bands, our calculation only
gives an upper limit of the deformation potential constant. We
assume that the lowest energy band is not influenced by the
lattice deformations, so it is taken as a reference when the band
energy shift of the conduction and valence bands is calculated.
The deformation potential constants for electrons and holes are
given in Table 3. As we can see, the deformation potential
constants are indeed anisotropic, due to the anisotropic
molecular packings in organic molecular crystals.
The elastic constants are obtained by fitting the total energy

of the deformed lattice with respect to the dilation through the
relation ΔE/V0 = Cii(Δl/l0)2/2, where ΔE is the total energy
change due to the dilation Δl/l0. The calculated elastic
constants of phthalocyanines are provided in Table 4. It is
noted that the elastic constants are less anisotropic, and the
values of the elastic constants of H2Pc, CuPc, NiPc, and TiOPc
are close to each other. With the deformation potential and the

Figure 2. Band structures and DOS for (a) H2Pc, (b) CuPc, (c) NiPc, and (d) TiOPc. Band energies are shifted so that Fermi levels are at the zero
point. The reciprocal coordinates of high-symmetry points are Γ = (0, 0, 0), Y = (0.5, 0, 0), K = (0.5, 0, 0.5), B = (0, 0.5, 0), Z = (0, 0, 0.5), A = (0.5,
0.5, 0), and D = (0.5, 0.5, 0.5). The highest valence bands and lowest conduction bands, including all of the sub-bands arising from inequivalent
molecules in the unit cell, are highlighted in red.

Figure 3. Projected DOS for the localized state of CuPc.
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elastic constant, we can calculate the relaxation time using eq 8.
Since both the deformation potential constant and the elastic
constant are anisotropic, the scattering probabilities are
anisotropic too. The scattering probability averaged over a, b,
and c directions is used to calculate the relaxation time. The
relaxation times of phthalocyanine crystals range from several
tens of femtoseconds to several hundreds of femtoseconds. It
should be noted that the method we used to evaluate the
relaxation times is crude. The matrix elements of electron−
phonon interactions could be calculated by the density
functional perturbation theory,60,61 but for organic molecular
crystals such calculations are impractical due to the huge
demand in computational resources.
Electrical Transport Coefficients. With the band energies

and the relaxation time, we can calculate the electrical transport
properties of phthalocyanine crystals. Figure 4 shows the
Seebeck coefficient S, the electrical conductivity σ, the
electronic thermal conductivity κe, and the power factor S2σ
as a function of the charge carrier concentration at 298 K. The
charge carrier concentration is determined by the density of
states and the Fermi−Dirac distribution function. The hole
concentration is written as

∫ ε ε μ ε= −N g f T2 ( ) [1 ( , , )] dp
VB 0 (12)

and the electron concentration is

∫ ε ε μ ε=N g f T2 ( ) ( , , ) dn
CB 0 (13)

The charge carrier concentration in Figure 4 is the net
concentration that is defined as the difference between the
concentration of holes and electrons. As the Fermi level shifts,
the dominant charge carriers change between electrons and
holes. The net carrier concentration is scaled as negative for n-
type doping and positive for p-type doping. The electrical
conductivities are apparently anisotropic in phthalocyanine
crystals. The conductivity of H2Pc in the direction of b is much
larger than that in the other two directions. This is because the
intermolecular distance along the b axis is much shorter than
the packing distance along a and c axes, and the π−π stacking in
the b direction leads to strong electronic couplings between
molecules. Similar situations are found in CuPc and NiPc. The
most compact stacking in CuPc is in the direction of a and that
of NiPc is in the direction of b. TiOPc exhibits a special
anisotropy because its crystal structure is different from the
others. The electrical transport in the direction of a and c
exhibits a comparably larger conductivity than b owing to the
greater molecular overlap in these two directions.
The slope of the linear region of the electrical conductivity

versus the charge carrier concentration profiles gives the charge
carrier mobility according to σ = μeN. As shown in Figure 4,
CuPc and NiPc are distinctly n-type semiconductors because
the electron mobility is higher than the hole mobility. These
two crystals have a relatively flat valence band and a modestly
dispersive conduction band. That makes the electrons transport
much easier than the holes. Though the valence band of TiOPc
is wider than the conduction band, the holes are more strongly
scattered by the acoustic phonons than the electrons because
the deformation potential constants for holes are larger than
those for electrons (Table 3), so the mobility of holes is less
than that of electrons based on our calculations. We notice that
the profiles of the electrical conductivity and the electronic
contribution to the thermal conductivity exhibit a similar
tendency as the charge carrier concentration varies. The
Lorentz number L = κe/(σT) is calculated to be 1.08 × 10−8,
1.31 × 10−8, 1.48 × 10−8, and 2.25 × 10−8 W Ω K−2 for H2Pc,

Table 2. Band Dispersions (meV) in High Symmetry Directions

YΓ ΓK KZ ZΓ ΓB BA AΓ ΓD whole band

H2Pc VB4 6 13 6 7 97 10 107 107 120
VB3 5 2 6 6 108 10 118 118 120
VB2 7 1 6 6 111 10 101 101 117
VB1 6 14 6 8 124 10 114 113 124
CB1 1 2 1 2 115 7 114 114 115
CB2 1 2 1 1 116 7 119 119 120
CB3 1 1 1 1 120 7 119 119 121
CB4 1 2 1 3 124 7 124 123 127

CuPc VB1 61 58 64 6 1 64 65 63 83
CB1 169 182 152 26 8 169 172 163 182

NiPc VB2 8 7 3 4 28 1 28 25 29
VB1 6 7 3 4 37 1 35 33 37
CB1 1 12 13 5 147 2 145 147 152
CB2 2 7 2 5 146 2 143 145 148

TiOPc VB2 161 106 48 44 15 161 146 70 176
VB1 237 165 46 83 25 237 262 155 262
CB1 90 74 31 36 20 89 109 77 109
CB2 68 83 94 83 4 86 82 12 100

Table 3. Deformation Potential Constants (eV) for Electrons
and Holes of Phthalocyanines

E1
a (h) E1

b (h) E1
c (h) E1

a (e) E1
b (e) E1

c (e)

H2Pc 0.60 1.72 0.93 0.35 0.93 2.03
CuPc 0.31 0.31 0.36 0.26 0.23 1.24
NiPc 0.72 0.03 0.53 0.40 0.69 0.35
TiOPc 1.75 0.59 1.49 0.02 0.36 0.71

Table 4. Elastic Constants of Phthalocyanines (109 J m−3)

Cii
a Cii

b Cii
c

H2Pc 12.1 8.2 15.9
CuPc 7.8 12.0 11.4
NiPc 11.5 13.2 11.9
TiOPc 13.8 14.0 10.1
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CuPc, NiPc, and TiOPc at a temperature of 298 K and a doping
level of −5 × 1020 cm−3. It is observed that the Lorentz number
is not the same for all materials; its value depends on the
doping levels, smaller than the theoretical value of L = (π2/
3)(kB/e)

2 = 2.44 × 10−8 W Ω K−2, which violates the
Wiedemann−Franz law. This is because the latter was obtained
from free-electron gas model, different from electrons in a band
modulated by crystal structure.62

The Seebeck coefficient is positive for holes and negative for
electrons. The Seebeck coefficient is isotropic at first glance,
and it decreases rapidly as the charge carrier concentration
increases. In fact, the Seebeck coefficient decreases linearly with
the Fermi level, and the carrier concentration increases
exponentially with the Fermi level. In Figure 5, the Seebeck
coefficient is plotted as a function of the logarithm of the carrier
concentration, and a linear relationship shows up. This is
consistent with the thermopower measurement of pentacene
and rubrene by the field-effect devices.20 The Seebeck
coefficients of phthalocyanine crystals have been measured.34

The α-form H2Pc, CuPc, and NiPc crystals were reported to
yield Seebeck coefficient of 1.25, 0.91, and 0.97 mV/K,
respectively, at 300 K. The largest Seebeck coefficients of H2Pc,

Figure 4. The Seebeck coefficient S, the electrical conductivity σ, the electrionic thermal conductivity κe, and the thermoelectric power factor S
2σ for

(a) H2Pc, (b) CuPc, (c) NiPc, and (d) TiOPc calculated as a function of the charge carrier concentration at 298 K. The charge carrier concentration
is positive for p-type doping and negative for n-type doping.

Figure 5. The Seebeck coefficient as a function of the logarithm of the
carrier concentration. The solid lines represent holes, and the dashed
lines represent electrons. In case of electrons, the absolute value of the
Seebeck and the concentration is used.
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CuPc, NiPc, and TiOPc are calculated to be 1.85, 1.86, 1.49,
and 1.38 mV/K for holes and −1.52, −1.52, −2.19, and −1.47
mV/K for electrons, which agrees reasonably well with the
experiments. The electron Seebeck coefficient of NiPc is the
largest in magnitude and the hole Seebeck of TiOPc is the
smallest. Overall, the differences in the Seebeck coefficients are
not appreciably large among the phthalocyanine crystals, nor is
it between electrons and holes.
As the carrier concentration increases, the electrical

conductivity increases and the thermopower decreases; the
thermoelectric power factor shows a peak value at certain
carrier concentrations. So doping is one of the effective ways to
control the thermoelectric performance of a material.
Controlled p-doping of phthalocyanines by strong electron
acceptors has been investigated by combined Seebeck and
conductivity measurements.63,64 A novel n-type doping
technique by strong donors has been developed to enable the
n-type conduction in metallophthalocyanines.65 The power
factors of n-doped phthalocyanines are higher than those of p-
doped, suggesting that all phthalocyanine crystals studied are n-
type thermoelectric materials. The maximum power factors of
H2Pc, CuPc, NiPc, and TiOPc reach a magnitude of 36.0, 81.7,
292.8, and 93.1 μW cm−1 K−2, respectively.
Lattice Thermal Conductivity. The thermal conductivity

has two contributions, one due to electrons and the other due
to phonons. The lattice thermal conductivity is caused by the
anharmonicity in lattice vibrations that can be characterized by
the classical force fields. To estimate the dimensionless figure of
merit, the lattice thermal conductivity is calculated. We only
evaluate the lattice thermal conductivity of H2Pc in the
direction of b, along which the largest power factor is observed.
We build super cells with reasonable lengths in the direction of
b. Each super cell is divided into 20 layers, labeled as layers 0, 1,
..., 19 from left to right, and 5 ns of NEMD simulations are
performed. The local temperature of layers 0 to 10 and the
instantaneous temperature for layer 0, the heat sink, and layer
10, the heat source, are plotted in Figure 6. One can find that as

the simulation proceeds, the temperature of layer 0 goes down,
and that of layer 10 goes up. After 1 ns, a steady state and the
local thermal equilibrium have been reached. The local
temperature of each layer is obtained by taking an average
over trajectories from 1 to 5 ns. Since periodical boundary
conditions have been applied, heat actually flows in two
opposite directions. So layers 1 and 19, layers 2 and 18, and so
on are equivalent in the sense of temperature. The local

temperature of layer 1 in Figure 6 is taken as the average
temperature of layers 1 and 19. A good linear relationship
between temperature and the layer number is shown except for
the region of the heat sink and source, which indicates that in
that region the unphysical exchange of atomic velocities and the
physical heat flow in the system are not well balanced. The
linear region of the temperature profile is fitted to obtain the
temperature gradient. The heat current is calculated by the
energy exchanged via eq 10. With heat current and temperature
gradient, we can derive the lattice thermal conductivity using
Fourier’s law given in eq 9.
To correct the boundary scattering effect, we carry out

NEMD simulations with box lengths of 25, 30, 35, 40, 50, and
55 unit cells in the direction of b. The inverse of the lattice
thermal conductivity κL

−1 versus the inverse of the box length
L−1 is plotted in Figure 7. Equation 11 is used to fit the

simulation results. From the intercept of the fitted line, we can
extract the bulk lattice thermal conductivity of H2PC in the
direction of b*, which is 2.1 W/mK. The phonon transport in
organic molecular crystals is anisotropic, and the largest lattice
thermal conductivity is usually in the direction in which the
molecular packing is the closest, as we have seen in the
pentacene crystal in our earlier investigation.40 Since the closest
packing arrangement in H2Pc is in the direction of b, we expect
that the lattice thermal conductivity is the largest in that
direction. The lattice thermal conductivities of other metal
phthalocyanines are approximated with that of H2Pc in the
evaluation of ZT.

Dimensionless Figure of Merit. Combining the lattice
thermal conductivity and the electrical transport coefficients, we
can estimate the ZT of H2Pc, CuPc, NiPc, and TiOPc. The ZT
value at 298 K as a function of carrier concentration is shown in
Figure 8. The crystal direction along which the power factor is
the largest is of interest, and it is the b, a, b, and a directions for
H2Pc, CuPc, NiPc, and TiOPc, respectively. Since the lattice
constant of three metalphthalocyanines in the directions of a, b,
and a is comparable to or larger than that of H2Pc in the
direction of b, we assume that the lattice thermal conductivity
of H2Pc gives an upper limit of the lattice thermal conductivity
of other phthalocyanines. The lattice thermal conductivity used
to calculate ZT is that of H2Pc in the direction of b*, which is
2.1 W/mK. As we can see, all phthalocyanine bulk crystals can
reach a maximum ZT whether n-doped or p-doped, but
apparently the dimensionless figure of merit of phthalocyanines

Figure 6. Temperature profile obtained from NEMD simulations for
box dimensions of 1 × 25 × 1. The solid line is a linear fit of the data.
Inset: instantaneous temperature of the heat sink (blue) and source
(red) as a function of simulation time.

Figure 7. Inverse of the thermal conductivity as a function of the
inverse of the box length for H2Pc. The heat flow is in the direction of
b*. Linear regression of the data yields the bulk thermal conductivity
of H2Pc in the direction of b*, which is 2.1 W/mK.
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is higher for n-doping. Along the b axis, the ZT value of H2Pc
can reach 0.5 with a doping level of −2.0 × 1020 cm−3, in the
case of CuPc, along the a axis the ZT can reach 0.8 with a
doping level of −3.5 × 1020 cm−3. The ZT value of NiPc shows
a peak value of 2.5 at a carrier concentration of −1.5 × 1020

cm−3, and that of TiOPc has a maximum value of 0.6 at a carrier
concentration of −1.0 × 1020 cm−3. Among these phthalocya-
nines, NiPc exhibits the highest figure of merit, and it is an n-
type thermoelectric material.
The crystals of H2Pc, CuPc, and NiPc do not show essential

ZT when p-doped. This can be attributed to the fact that the
Seebeck coefficients for electrons and holes are close in
magnitude, but the charge carrier mobility of holes is much
lower than that of electrons, especially in the case of NiPc. The
Seebeck coefficients are slightly different among these
phthalocyanines, but the electron mobility in NiPc is much
higher than that in H2Pc and CuPc. So the best thermoelectric
performance is observed in NiPc. TiOPc has a charge carrier
mobility comparable to NiPc, but the Seebeck coefficient of
TiOPc is lower than that of NiPc, so the power factor and ZT
of TiOPc are lower than those of NiPc. For TiOPc, the electron
mobility is just slightly higher than the hole mobility, so the ZT
value when p-doped is only slightly lower than that when n-
doped. TiOPc is the only p-type thermoelectric material with a
ZT of 0.6. From the discussions above, we show that the
thermoelectric performance of semiconducting phthalocyanine
crystals can be improved by dopings, and the accurate control
of the doping level can turn NiPc into an effective n-type
thermoelectric material.

IV. CONCLUSIONS
To summarize, we have proposed a parameter-free computa-
tional scheme that combines the first-principles band structure
calculations, the Boltzmann transport theory, the deformation
potential theory, and the nonequilibirum molecular dynamics
simulations to predict the thermoelectric property for organic
molecular crystals. The relaxation time is now calculated at the
first-principles level, instead of assuming a constant estimated
from experiments as commonly practiced. This method is
applied to investigate the thermoelectric properties of
phthalocyanine crystals including H2Pc, CuPc, NiPc, and
TiOPc. The Seebeck coefficients are found to be in good
agreement with the experiments, validating our assumption of
energy band description for such closely packed organic
materials as well as the electron−phonon relaxation time
described by deformation potential approximation. It is found

that phthalocyanines could be efficient n-type thermoelectric
materials when doped with electron donors. The central metal
atom and the molecular packing in phthalocyanine crystals
show profound influences on the thermoelectric transport
properties. The thermoelectric figure of merit at the optimal
doping level ranges from 0.5 for H2Pc to 2.5 for NiPc when n-
doped. The optimal thermoelectric material is found to be
NiPc, which exhibits both high electron mobility and large
Seebeck coefficient. Our study suggests that organic molecular
crystals can show promising thermoelectric figures of merit
through controlling the doping level. Our results and the
doping level predicted are useful in the search for efficient
organic thermoelectric materials. It should be pointed out that
the present approach does not take the charge localization
effect into account, or polaron effect.31 When considering
doping, since the bandwidth for organic semiconductors is
usually narrow, the carrier scattering effect could also be
important, in addition to scattering/relaxation with static and
dynamic disorders and impurities. All of these impose
interesting challenges for further investigation.
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