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We summarize our recent progresses in developing first-principles methods for predicting the intrinsic

charge mobility in carbon and organic nanomaterials, within the framework of Boltzmann transport

theory and relaxation time approximation. The electron–phonon couplings are described by Bardeen

and Shockley’s deformation potential theory, namely delocalized electrons scattered by longitudinal

acoustic phonons as modeled by uniform lattice dilation. We have applied such methodology to

calculating the charge carrier mobilities of graphene and graphdiyne, both sheets and nanoribbons, as

well as closely packed organic crystals. The intrinsic charge carrier mobilities for graphene sheet and

naphthalene are calculated to be 3 � 105 and �60 cm2 V�1 s�1 respectively at room temperature, in

reasonable agreement with previous studies. We also present some new theoretical results for the

recently discovered organic electronic materials, diacene-fused thienothiophenes, for which the charge

carrier mobilities are predicted to be around 100 cm2 V�1 s�1.
1. Introduction

Organic and carbon nanostructured materials have been inten-

sively studied for their potential applications inorganic solar

cells, organic light emitting diodes, organic field-effect transistors

and various types of sensors.1–3 The key factor influencing the

performance of these organic electronic devices is the charge
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carrier mobility, m, which describes the ability of charge carriers

to move in bulk materials. It is defined as m ¼ v/F, where v is the

charge carrier drift velocity and F is the external electric field.

Usually, its unit is cm2 V�1 s�1. According to classical mechanics,

an electron gains a field-induced momentum Dp ¼ �eFs during
a period of time t. The electron loses its momentum by scattering

with lattice vibration, impurities, defects as well as disorders.

Therefore, under the steady current condition, we have

Dp ¼ �eFs, where s is the mean scattering time, i.e. the average

time between two consecutive scattering events. Then the
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velocity of the charge carrier with an effective mass m* becomes

v¼�esF/m*. Thus the mobility is expressed as m¼�es/m*, which

suggests that the charge carrier mobility can be improved by

increasing the mean scattering time s or reducing the effective

mass m*. Generally, for traditional inorganic semiconductors,

such as silicon single crystal, the mobility is around 102 to 103 cm2

V�1 s�1 at room temperature.4 Due to its high mobility, as well as

natural abundance and stability, silicon is the material by far

most widely used in electronic devices. Alternative materials with

large high charge carrier mobilities are of great interest and

challenging, especially at the nanoscale. Two important mile-

stones in this field are the experimental discoveries of one-

dimensional (1D) carbon nanotubes (CNTs) by Iijima5 and
Ling Tang

Ling Tang received his PhD in

physics supervised by Prof. Ke

Xia at the Institute of Physics of

the Chinese Academy of

Sciences in 2008. He then moved

to Tsinghua University for

a postdoctoral stay with Prof.

Zhigang Shuai. In 2010 he

joined the faculty of the

Department of Applied Physics

at Zhejiang University of Tech-

nology, Hangzhou, China. His

main research interests are the

first-principles calculations of

transport properties in magnetic

nanostructures and organic

semiconductor materials, including the magnetoresistance in spin-

tronics devices such as spin valves and carrier mobility in pi-

conjugated organic crystals.

Dong Wang

Dong Wang received her PhD in

physical chemistry supervised by

Prof. Qingshi Zhu at the

University of Science and Tech-

nology of China in 2000. She

then worked as a postdoctoral

researcher with Prof. Eitan

Geva at the University of

Michigan, USA, and with Prof.

Greg Voth at the University of

Utah, USA. Since 2009, she

became an associate professor in

the Department of Chemistry,

Tsinghua University. Her

research interests include the

theoretical characterization of

thermoelectric transport in organic materials and computer simu-

lations of self-assembly in soft matter.

This journal is ª The Royal Society of Chemistry 2012
two-dimensional (2D) graphene sheet (GS) by Novoselov et al.6

The mobility of single-walled carbon nanotubes (SWCNTs) can

reach 104 cm2 V�1 s�1 at room temperature,7 while the mobility of

single layer graphene is 105 cm2 V�1 s�1,8,9 even reaching 107 cm2

V�1 s�1 at low temperature.10 These two carbon materials are

considered to be promising for next-generation nanoelectronics.

On the other hand, since the first demonstration of thiophene-

based field-effect transistors in 1986,11 organic molecular semi-

conductors have attracted more and more interest in electronics,

opto-electronics as well as printing electronics.2,12–14 The charge

carrier mobilities of organic semiconductors were traditionally

low (10�5 to 10�2 cm2 V�1 s�1 at room temperature).11,15–17

However, since organic materials have great advantages, such as

low cost, large area production, easy fabrication, and mechanical

flexibility, there have been intensive efforts in recent years

through synthesis and processes, to improve their charge carrier

mobility and stability. Now, the mobilities of organic materials

can reach about 1–10 cm2 V�1 s�1 in thin films,18 and even higher

in single crystals of small molecules like rubrene,19 oligoa-

cenes20,21 and diacene-fused thienothiophenes (DAcTTs).22,23

Designing new organic materials with air-stability and large

mobilities is a formidable yet promising task.

For more than sixty years, theories to describe charge trans-

port in molecular system have been continuously debated.24–27

Generally speaking, depending on the electron–phonon coupling

strength, three major transport models have been developed,26,27

i.e. fully localized charge hopping model, polaron transport with

certain spatial extension, and the fully delocalized band-like

mechanisms. The hopping model, at the very beginning, is often

employed to describe disordered systems.28 It assumes that the

charge carriers are completely localized and hop from one

localized state to another by thermal activation since a higher

temperature provides more energy for charge carriers to surpass

the energy barriers.26 Namely, when the intermolecular electron
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coupling (hopping integral V) is much less than the molecular

reorganization energy (l), the charge carrier becomes localized in

one single molecule. The hopping model has been popularly

described by Marcus theory29 for many organic materials.26,30–32

However, for the closely packed molecular single crystals, such as

oligoacenes (V is close to or even larger than l), the transport

properties are band-like and the bandwidth can reach a few

tenths of an eV,33 similar to those in inorganic crystals. Several

models have been proposed to explain the band-like transport

behavior of charge carriers. The first such attempt is the well-

delocalized band model, which has been used extensively in

inorganic crystals.33,34 In this model, the electron–phonon

coupling is regarded as a perturbation and the charge is delo-

calized over the crystal. The second is the polaron model, in

which the electron is surrounded by phonon clouds, forming

a quasi-particle (polaron) due to strong electron–phonon inter-

action. The polaron model in fact contains both hopping and

band mechanisms over different temperature range and due to

different electron–phonon coupling strength.26 The polaron

model proposed by Holstein has been well documented in text-

books35 and the recent developments have been focused on (i)

including both local and non-local electron–phonon couplings

and considering both inter- and intra-molecular vibrations; (ii)

evaluations of parameters from first-principles so that more

quantitative studies becomepossible.36

Within the polaron model in general, the scatterings by

acoustic phonons are usually ignored due to their long wave-

length nature. Tang et al.37 have first calculated the mobilities of

oligoacenes with acoustic phonon scattering based on Bardeen

and Shockley’s deformation potential (DP) theory38 applicable

for delocalized charges. Since the hopping and polaron models

have been summarized before,27,39 hereby, we focus on reviewing

our recent progresses on applying the band model to charge

transport in carbon and organic nanomaterials, including new

carbon nanostructures and the tightly packed organic molecular

crystals. For the new carbon allotropes, the electron coherence

length is close to the acoustic phonon wavelength, and it is much

larger than the bond length. For some organic materials, the

intermolecular transfer integral is comparable to or even larger

than the molecular reorganization energy, the electron transport

exhibits band-like behavior.33,40 In either case it is suitable to deal

with the charge transport by the band-like model. Recently, the

band model combined with DP theory has been widely applied to

charge transport in 1D nanotube,41 DNA stack42 and closely

packed molecular crystals.43,44

Boltzmann transport theory forms the basis for describing

charge transport in a weak external field.35,45 Relaxation-time

approximation45 and the Monte Carlo method46 have been

widely applied to solving the Boltzmann transport equation. The

drift-velocity versus electric field characteristics can be obtained

from Monte Carlo simulation. The slope gives the charge

mobility.47,48 In this work, we focus on the relaxation-time

approximation, and describe the computational method will be

described in detail in Section 2. According to the Boltzmann

transport theory, each time the carriers are scattered elastically

by phonons, defects or impurities, the charge distribution func-

tion in phase space recovers from drift motion. The scattering

rate for the electronic state (i,~k) can be described by the Fermi-

golden rule,
4350 | Nanoscale, 2012, 4, 4348–4369
Pi~k ¼
X
j;~k 0

W
�
ik; j~k 0

�
¼ 2p

h-
X
j;~k 0

���M�
ik; j~k 0

����2dh3i�k.�
� 3j

�
k
.0

�i

(1)

Here i, j are the band indexes and ~k,~k0 are the electron wave-

vectors. The matrix element M(ik, j~k’) ¼ h j,~k’|DV |i,~k i describes
the scattering from state (i,~k ) to state ( j,~k’) by the deviation

potential arising from the atomic displacement associated with

the phonons or the perturbation potential caused by defects or

impurities. Moreover, if we define the electron relaxation-time s,
which is the inverse of the scattering rate, the total electron

relaxation-time can be described by Matthiessen’s rule

1

s
¼ 1

sac
þ 1

sop
þ 1

simp

þ/ (2)

which includes contributions from the acoustic phonons sac, the
optical phonons sop, the impurities simp, as well as others such as

piezoelectric scattering,49 polarity optical phonon scattering50

and carrier–carrier scattering.51 The scattering matrix M is the

key factor for calculating the charge mobility. A general

discussion of different scattering mechanisms in inorganic

semiconductors have been described before.46,52 The impurities

and defects are common in the vast majority of materials, and

they have a great influence on the charge transport properties,

especially at low temperature where phonon effects are minor.53

Generally, for an ionized impurity in inorganic semiconductors,

the scattering source is simply a screened Coulomb potential.

There have been two different formulations: the Conwell and

Weisskopf approach,54 where the impurity atom with charge Ze

is taken as a naked Coulomb potential V(r) ¼ Ze(4p330r)
�1, and

the Brooks and Hering approach,55 which takes into account

the electron screening effect to the potential of the ion, with

V(r) ¼ exp(�bsr)Ze(4p330r)
�1, where bs ¼

�
e2n0

330kBT

�1=2

is the

inverse screening length, n0 is the free-carrier density. The

scattering potential in k-space is determined by the Fourier

transformation DV
�
~k 0 � ~k

�
¼ DVð~q Þ ¼ Ð

Vð~r Þexpð�~q$~r Þd~r.53
Although the impurity and defect scatterings have been studied

for more than a half century, a quantitative understanding of

electron-impurity (defect) scattering through first-principles

calculations has only been possible very recently.56–58 The

screening effect is of vital importance for impurities, and it is

often treated by the random-phase approximation.59–61 The

relation between the screened potential and the bare potential at

temperature T is determined by Vuns(~q,T ) ¼ 3(~q,T )Vscr(~q,T ). The

dielectric function is 3(~q,T )¼ 1 + vc(~q )P(~q,T ), where~q¼ ~k’� ~k.

P(~q,T ) is the irreducible finite temperature polarizability and

vc(~q ) is the Fourier coefficient of the electron–electron Coulomb

interaction. Hwang and Das Sarma62 obtained the static polar-

izability function with the screening effect to explain the trans-

port properties of 2D graphene sheet, while Brey and Fertig63

have given the scattering rates with screening of scattering

potential by free carriers in the graphene nanoribbons. Actually,

for organic materials, the impurities and defect states act as traps

for the electrons or holes. If its electronic levels are within the

band gap, they simply act as a scattering center for the delo-

calized carriers, just like what discussed above. Although the
This journal is ª The Royal Society of Chemistry 2012
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defects in molecular semiconductors have been noticed for a long

time, the precise nature is still not well understood.64

The electron–phonon coupling (EPC) is expressed as

M
~qs

j~k�~q,i~k ¼ h j,~k � ~q |DV~qs|i,~k i. DV~qs is the deviation of the single

electron potential with respect to atomic displacement associated

with the phonon branch s with wave vector~q. The EPC has been

estimated empirically for both acoustic and optical phonons.65,66

However, such estimation from transport measurements can give

very different results. For instance, the electronic deformation

potential constant for graphene has been estimated to range from

10 to50 eV.67–69 It is desirable to compute EPC at the first-prin-

ciples level. Following the pioneering work on electron–phonon

interaction by Fr€ohlich,70 Holstein,71 Bardeen and Pines,72 the

computational methods developed so far have ranged from

frozen-phonon approaches73–75 to linear response theory.76–78 For

molecular crystals, much work has been devoted to modeling the

inter- and intra- electron–phonon couplings based on the

hopping or polaron model,79–82 where the phonon dispersion is

often neglected. Recently, a remarkable progress has been made

in density functional perturbation theory (DFPT)83 within the

framework of density functional theory (DFT).84,85 This tech-

nique treats phonon (~q,s) as a perturbation to the self-consistent

potential created by all electrons and ions. It can significantly

reduce the computational time by calculating one primitive unit

cell only, instead of constructing a large super cell for the

dispersion effect, because it can take into account the phase

relation between the neighboring primitive cells. It has been

applied to study of the Kohn anomaly and the lattice

dynamics,86–88 superconductormechanism89 as well as thermo-

electric effect.90 DFPT has been applied with relaxation-time

approximation to ionic compounds,91 the charge mobility in

silicon,56 and monolayer and bilayer graphene.92,93 But it is still

challenging to evaluate the integrals in the first Brillouin zone

(BZ) for EPC with high accuracy. For example, in order to

compute the electron–phonon scattering rate (eqn (1)), it is

necessary to evaluate integrals over all the possible phonon wave-

vectors (from thousands to millions) in the first BZ. Since the

lattice dynamics calculations for each phonon are at least as

expensive as the self-consistent field total energy calculation,

achieving numerical convergence of integration over the BZ

could become a prohibitive computational task. Current calcu-

lations are still limited to simple systems with a few atoms per

unit cell, and only very few attempts have been made to address

complex systems such as metallic nanowires94 and organic

materials.95 Recently, Louie and coworkers96 have developed

a scheme to exploit the localization character for both electronic

and lattice Wannier functions. The electronic and vibrational

states and the EPC matrix elements are first calculated in normal

Bloch state with few k-points, and then these are transformed

into Wannier space. The phonon dynamics matrix and the EPC

matrix elements are truncated in Wannier space since they are

quite localized, and a generalized Fourier interpolation is applied

to back transform EPC matrix to Bloch space with much more

dense points in k-space. This technique had been applied to

inorganic semiconductors97,98 and to the potassium-doped

picene99 recently. Because of the computational scaling problem,

the calculation of EPC by DFPT may be still unpractical for

complex and large systems such as organic materials. For organic

and polymeric materials, Vukmirovi�c and Wang100,101 have
This journal is ª The Royal Society of Chemistry 2012
developed the charge patching method (CPM), which can be

used to calculate the electronic states for systems with tens of

thousands atoms, and have calculated EPC of disordered poly-

thiophene bulk materials at first-principles.102

In this work, assuming the thermal electron wavelength is close

to the acoustic phonon’s wavelength, we consider only transport

at room temperature and focus on the electron–acoustic phonon

coupling in the framework of DP theory,38 where three major

approximations have been assumed: (i) the transverse acoustic

(TA) phonon mode is not included due to its negligible effect on

the DP;38(ii) the scattering probability is independent of state

momentum; (iii) charge transport direction is assumed to be

parallel to the phonon propagation direction.37 DP theory is

coupled with first-principles band structure calculation and the

Boltzmann transport theory under the relaxation-time approxi-

mation. It was found that this method can well describe the

transport properties of various materials, such as carbon103,104

and organic systems.37

This article is structured in the following way. Section 2

describes the theoretical formalism, including Boltzmann trans-

port theory, the DP theory and the effective mass approximation.

In Section 3, by taking graphene, graphdiyne, oligoacenes and

DAcTTs as examples, we present computational results for the

electronic structure and the charge mobility of these materials.

Conclusions and outlook are presented in Section 4.

2. Computational methodologies

In this section, we derive the mobility formula based on the

Boltzmann transport equation and the relaxation time approxi-

mation. The relaxation time can be obtained by applying the

deformation potential theory. The effective mass approximation

and the first-principles derivation of the parameters in the

mobility expression are discussed.

2.1. Boltzmann transport theory

The electron distribution fi (~r,~k,t) follows the Fermi–Dirac

function. It undergoes deformation with an external field and the

Boltzmann transport theory assumes that the scatterings restore

the distribution function to the original one. Under the steady

state condition, we have

vfi

�
~r; ~k; t

�
vt

jdiff þ
vfi

�
~r; ~k; t

�
vt

jdrift

þ
vfi

�
~r; ~k; t

�
vt

jscatt ¼ 0: (3)

If we only consider the weak external direct current (DC)

electric field

"
vfi

�
~r; ~k; t

�
vt

jdrift ¼ �
_
k
/

$
vf

v~k
¼ e

h-
~E$V~k fi

�
~r; ~k; t

�#
, and

we ignore the diffusion term, then eqn (3) becomes

� e

h-
~E$V~k fi

�
~k
�
¼

vfi

�
~k
�

vt
jscatt; (4)

where~r,t are omitted for simplicity, ~E is the external electric field

and i is the band index. The relaxation-time approximation

assumes45
Nanoscale, 2012, 4, 4348–4369 | 4351
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vfi

�
k
.�

vt

�����
scatt

¼ �
fi

�
k
.�

� f 0i

�
k
.�

si
�
k
.� ; (5)

where f 0i

�
k
.�

is the equilibrium Fermi–Dirac distribution, while

fi

�
k
.�

is the local concentration of electron in the state (i,~k) in the

neighbourhood of the point ~r in the space and is assumed to

deviate not far from f 0i

�
k
.�

. si
�
k
.�

is the relaxation-time from

fi

�
k
.�

to f 0i

�
k
.�

when the external field is removed. Substituting

eqn (4) into eqn (5), and neglecting the second-order term, we get

fi

�
k
.�

zf 0i

�
k
.�

þ esi
�
k
.� vf 0i

�
k
.�

v3i

�
k
.� ~E$~vik: (6)

By definition, the mobility mb is the ratio between the drift

velocity hvbi, and the electric field Eb in the b direction,

m
eðhÞ
b ¼ hvbi

Eb

¼

X
i˛CBðVBÞ

ð
vb

�
i; ~k

�
fi

�
~k
�
d~k

Eb

P
i˛CBðVBÞ

Ð
fi

�
~k
�
d~k

: (7)

The integral in the denominator of eqn (7) for electrons and

holes can be expressed as

ð
f
�
~k
�
d~kz

X
i˛CB

ð
f0

	
3i

�
~k
�
� u



d~k (8)

and ð
f
�
~k
�
d~kz

X
i˛VB

ð
1� f0

	
3i

�
~k
�
� u


� �
d~k (9)

where u is the chemical potential. Correspondingly, substituting

eqn (6) into eqn (7) and considering that f0i (~k) is an even function,

while vb(i,~k) is an odd function, and normally the band gap is

much larger than kBT, we can replace the Fermi–Dirac distri-

bution with the Boltzmann distribution. Finally the electron

(hole) mobility can be expressed as

m
eðhÞ
b ¼ e

kBT

X
i˛CBðVBÞ

ð
sb
�
i; ~k

�
v2b

�
i; ~k

�
exp H

3i

�
~k
�

kBT

2
4

3
5d~k

P
i˛CBðVBÞ

Ð
exp H

3i

�
~k
�

kBT

2
4

3
5d~k

(10)

where the minus (plus) sign is for electron (hole). The group

velocity vb(i,~k) and band energy 3i(~k) can be determined by DFT

calculation. The key is to calculate the electron (hole) relaxation-

time sb(i,~k). The scattering term can be expressed as

vfi

�
k
.�

vt
scatt

¼
X
~k0 ; j

fWð jk.0; ik
.Þ fjð~k0Þ½1� fið~kÞ�

�Wðik.; jk
.0Þ fið~kÞ



1� fjð~k 0Þ�g

������� (11)

where W
�
i k
.
; j k

.0
�
is the transition probability from electronic

state
�
i; k

.�
to

�
j; k

.0
�
(see eqn (1)). At the thermal equilibrium,
4352 | Nanoscale, 2012, 4, 4348–4369
W
�
jk
.0; ik

.�
f 0j

�
~k0
�	

1� f 0i

�
~k
�


¼ W
�
ik
.
; jk

.0
�
f 0i

�
~k
�	

1� f 0j

�
~k0
�


:

Using Fermi–Dirac distribution, it can be further simplified as:

W
�
jk
.0; ik

.�
exp

�
3i

�
~k
�.

kBT
�

¼ W
�
ik
.
; jk

.0
�
exp

�
3j

�
~k0
�.

kBT
�
:

For elastic scattering 3i (~k) ¼ 3j (~k’), we can have

W
�
j k
.0; i k

.�
¼ W

�
i k
.
; j k

.0
�
, thus eqn (11) can be expressed as

vfi

�
k
.�

vt
scatt

¼
X
~k0 ; j

W
�
ik
.
; jk

.0�	
fi

�
~k0
�
� fi

�
~k
�
������� (12)

Combining eqn (1), (5), (6) and (12), the relaxation-time is

expressed as

1

s
�
i; k

.� ¼ 2p

h-
X
k
.0 ; j

����M�
ik
.
; jk

.0
�����

2

d

	
3i

�
k
.�

� 3j

�
k
.0

�


1�
s
�
j; k

.0
�
~v
�
j; k

.0
�
$~eE

s
�
i; k

.�
~v
�
i; ~k

�
$~eE

2
64

3
75 (13)

where ~eE is the unit vector along the electric field. In principle,

eqn (13) can be solved iteratively. To avoid the iteration, eqn (13)

is approximated as

1

sb
�
i; k

.� ¼ 2p

h-
X
k
.0 ; j

����M�
ik
.
; jk

.0
�����

2

d

	
3i

�
k
.�

� 3j

�
k
.0

�


1�
vb

�
j; k

.0
�

vb

�
i; k

.�
2
64

3
75: (14)

1�
vb

�
j; k

.0
�

vb

�
i; k

.�
2
64

3
75 describes the scattering angle weighting

factor105 in the external field direction of b. If we have a spherical

energy surface 3(~k) ¼ h-2k2/(2m*), the weighting factor is

(1� cos q) and q is the angle between the two wave vectors. Now,

the difficulty is to calculate the scattering matrix element. Here

we only consider the dominant scattering of a thermal electron or

hole by acoustic phonon within the DP theory.

2.2. Deformation potential theory

The DP theory was proposed by Bardeen and Shockley38 in 1950s

to describe the charge transport in non-polar semiconductors.

Since the electron velocity with energy kBT at 300 K is about

107 cm s�1, and the corresponding wavelength is 7 nm, according

to l¼ h/(mv), which is much larger than the lattice constant, thus

the electron is scattered mainly by the acoustic phonons.
This journal is ª The Royal Society of Chemistry 2012
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The DP theory assumes that the lattice potential perturbation

due to thermal motions DV(~r) has a linear dependence on

the relative volume change D(~r). Namely, DV(~r) ¼ E1D(~r),

where E1 is defined as the DP constant. The displacement

at site ~r associated with the acoustic phonon with wave-vector

~q is

uð~rÞ ¼ 1ffiffiffiffiffi
N

p ~e~q

h
a~q e

i~q$~r þ a~q
*e�i~q$~r

i
; (15)

whereN is the number of lattice sites in the unit volume.~e~q and

a~q are the unit vector and amplitude of the acoustic phonon ~q.

The relative volume change can be expressed as

Dð~r Þh vuð~r Þ
v~r

¼ iffiffiffiffiffi
N

p ~q$~e~q

h
a~q e

i~q$~r � a~q
*e�i~q$~r

i
: (16)

From eqn (16), it is found that only the LA wave contributes

to the deformation. So the matrix element for electron

(hole) to be scattered from Bloch state |i,~ki to |i,~k’i can be

expressed as

����M�
i~k; i~k0

�����
2

¼
����Di; ~k ���DV ���i; ~k0

E����
2

¼ 1

N

�
Ei

1

�2
q2a~q

2 (17)

where ~q ¼ �(~k’ � ~k). At high temperature, when the lattice

waves are fully excited, the amplitude of the wave is given by

a2~q ¼ kBT/(2mq2v2a) according to the uniform energy partition

theory, wherem is the total mass of lattice in the unit volume, and

~va is the velocity of the acoustic wave. Finally, the average

scattering probability becomes

����M�
i~k; i~k0

����2� ¼
kBT

�
Ei

b

�2

Cb

(18)

whereCb¼ rv2a¼Nmv2a is the elastic constant for the longitudinal

strain in the direction of propagation of the LA wave (b). Ei
b is

the DP constant of the i-th band. We assume that the scattering

matrix element is independent of state ~k or ~k0, and the charge

transport direction (electric field direction) is parallel to the wave

vector of LA phonon. The relaxation-time of the LA phonon

scattering by DP theory can be expressed as

1

sb
�
i; ~k

� ¼
2pkBT

�
Ei

b

�2

h-Cb

X
~k0

d

	
3i

�
~k
�
� 3i

�
~k0
�


1�
vb

�
i; ~k0

�
vb

�
i; ~k

�
2
4

3
5

(19)

Combining eqn (10) and (19), the charge relaxation-time s and
mobility m can be calculated once the band structure, DP

constant Ei
b and the elastic constant Cb are determined.

2.3. Effective mass approximation

Sometimes, the effective mass approximation can be used to

simplify the mobility formulae to provide some heuristic insights,

though it is not necessary from the first-principles point of

view. In the three-dimensional (3D) systems, for the spherical

energy surface, the band energy can be written in a very simple

form as
This journal is ª The Royal Society of Chemistry 2012
3
�
~k
�
¼ 30 þ h-2k2

2m*
: (20)

Here m* ¼ -2/[v23(~k)/v~k2] is the charge effective mass, 30 is the

energy of band edge. According to eqn (19) and using (1 � cos q)

to replace 1�
vb

�
i; ~k

0
�

vb

�
i; ~k

�
2
4

3
5, the relaxation-time s is

1

sb
�
~k
� ¼

ffiffiffiffiffiffiffi
23~k

p
kBTE

2
bm

*3=2

C3D
b h-4p

: (21)

The mobility of 3D systems is38

m3D
b ¼ ehsbi

m*
¼ 2

ffiffiffiffiffiffi
2p

p
eC3D

b h-4

3ðkBTÞ3=2E2
b m

*5=2
: (22)

Here C3D
b ¼ 1

V0

v2E

vðdl=l0Þ2
���l¼l0 is the 3D elastic constant, ~l0 is the

lattice vector along the direction of b. Similarly, in the 1D case,

the analytical expression of the charge mobility is reformulated

by Beleznay et al.,42 and was employed to study the charge

transport in the guanine stack,

m1D
b ¼ eh-2C1D

b

ð2pm*kBTÞ1=2E2
b

; (23)

where C1D
b ¼ 1

l0

v2E

vðvl=l0Þ2
�����
l¼l0

is the 1D elastic constant.

The mobility expression for 2D systems is:106–108

m2D
b ¼ eh-3rv2aWeff

ðm*Þ2kBTE2
b

(24)

Weff ¼
�ð���zðzÞ���4dz��1

: (25)

Here r is the mass density of 2D system and va is the velocity of

the acoustic wave. Weff is the effective width that depends on the

degree of carrier confinement in the direction perpendicular to

the plane of transport. x(z) is an envelope function, which

describes the electronic bound state along the direction. For

example, in semiconductor layers, such as GaAs/(Ga,Al)As, the

energy has a large step at the interface and the layer function is

like ‘‘infinitely deep square wells’’. Thus,

xnðzÞ ¼
�
2

L

�1=2

sin

�
npz

L

�
; ðn ¼ 1; 2; 3;.Þ: (26)

And Weff ¼ 2L/3, where the layer width (square well width)

is L.108 The eqn (22)–(24) have been employed to study 2D

‘‘heterolayer’’ semiconductors,107 2D organic systems,43 1D

carbon nanotube109 and graphene nanoribbons.103 Note thatm*is

averaged over all directions, which is not appropriate to describe

the anisotropic behavior of charge transport and only suitable

for the parabolic band. For the example of graphene sheet or the

zig-zag graphene nanoribbons, due to the Dirac point or the flat

band structure at the Fermi surface, the effective mass approxi-

mation fails and one needs to calculate mobility by eqn (10),

which includes the detailed information of the band structure

and is appropriate to describe the anisotropic transport.
Nanoscale, 2012, 4, 4348–4369 | 4353
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Fig. 1 (a) Total unit cell energy versus lattice dilation and (b) band

energy of VBM (EVBM) with respect to core level (Ecore) versus lattice

dilation. The red lines are the fitting curves. Reproduced from ref. 37 with

permission by Science China Press.

Fig. 2 Schematic presentation of (a) the lattice structure, (b) the band

structure and (c) the three nanoribbons building blocks of a single layer

graphene.
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2.4. Numerical schemes

To obtain the chargemobility by eqn (10), there are some physical

quantities to be determined by electronic structure calculations.

Starting with the DFT band structure, we follow Madsen and

Singh110 to apply smoothed Fourier interpolation in k-space in

order to obtain denser band. The anisotropic relaxation-time

sb(i,~k) can be evaluated by eqn (19), with the information of the

elastic constantCb and the DP constantEi
b. In order to obtain the

elastic constant, firstly, we stretch and compress the crystal’s

lattice vectors along the external field’s direction. By fitting the

total energywith respect to volume change, (E�E0)/V0 to dilation

Dl/l0 with (E�E0)/V0¼Cb (Dl/l0)
2/2, the elastic constantCb along

the transport direction b can be determined. Here V0 is the cell

volumeat equilibrium, and l0 is the lattice constant alongdirection

of b. A typical example of the parabolic fitting of Cb for naph-

thalene37 is shown in Fig. 1a. The DP constant is defined as

Ei
b ¼ DVi/(Dl/l0), where DVi is the energy change of the i-th band

with lattice dilation Dl/l0 along the direction of b. In general, we

take the energy change at conduction bandminimum (CBM) and

at valence band maximum (VBM) for electron and hole state,

respectively.DP theory that describes the shifts in individual band

edges by strain is still under debate.111–113 This is a serious issue in

semiconductor physics because the absolute deformation poten-

tial (ADP) is an important factor in assessing quantum confine-

ment for hole or electron in heterostructure quantum wells and

nanocrystals.114,115 The difficulty in theoretical calculation of the

ADP is that the absolute position of an energy level with respect to

vacuum level in an infinite periodic crystal is ill-defined. The

energy of a charged particle is determined by the electrostatic

potential where it is located, which in turn depends on the charge

density in all space, not just in the local region, owing to the long-

range nature ofCoulomb interactions. Toovercome this problem,

here, we follow an approach proposed by Wei and Zunger,111

which assumed the energy level of the deep core state not sensitive

to the slight lattice deformation. Thus, it could be used as

a reference to obtain the absolute band edge shifts. The example of

linear fitting of Ei
b of naphthalene

37 is shown in Fig. 1b.

Actually, the charge relaxation-time and mobility can be also

calculated by effective mass approximation if the energy surface

is spherical (isotropic band structure). The effective mass
4354 | Nanoscale, 2012, 4, 4348–4369
m* ¼ -2/[v23(~k)/v~k2] can be calculated through a quadratic fit of

the energy versus k-points for the bottom (top) of CB (VB) for

electron (hole).

In the following, the first-principles crystal structure optimi-

zation and band structure calculation are carried out using DFT

as implemented in Vienna Ab-initio Simulation Package

(VASP)116–119 with a projector augmented wave (PAW)120

method. The Boltzmann transport equation with relaxation-time

approximation is used to calculate the charge mobility eqn (10),

and relaxation-time eqn (19) as implemented in the BoltzTraP110

code, within the DP formalism.
3. Results and discussion

3.1. Graphene

Graphene, a 2D sheet of carbon atoms in a honeycomb lattice

(see Fig. 2a), has been found to possess unique electronic prop-

erties121 since its first discovery by Novoselov and Geim et al. in

2004.6 The band structure of the monolayer graphene is shown

in Fig. 2b. It is found that the VB and CB only intersect at the

k-point (Dirac point) and the energy dispersion is linear. The

effective mass of electrons is zero, and the electrons indicate

a relativistic-like behavior.122 This material is very promising in

device applications as it has an extremely high intrinsic mobility,

which achieves 105 cm2 V�1 s�1 at room temperature,8,9 even up to

107 cm2 V�1 s�1 at T # 50 K in the decoupled graphene.10 Three

types of 1D graphene nanoribbons (GNRs) can be obtained by

cutting graphene along different edges (see Fig. 2c), which

include the armchair graphene nanoribbon (AGNR), zig-zag

graphene nanoribbon (ZGNR) and chiral graphene nanoribbon

(CGNR). Recently, the charge mobility of 1D nanoribbon FETs
This journal is ª The Royal Society of Chemistry 2012
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Fig. 3 Schematic presentation of graphene and an acoustic phonon.

Reprinted with permission from ref. 103. Copyright 2009 American

Chemical Society.

Fig. 4 Schematic representation of (a) single layer graphene and (b)

bilayer graphene. The rectangle drawn with red dashed line represents the

super cell for transport calculations, and x and y are the transport

directions in the plane.

Table 1 The interatomic C–C distances, interlayer distances d and
(errors) for BLG, calculated using LDA, PBE and PBE-D methods. The
errors are presented in respect with experimental value for graphite
(ref. 138)

Exp. LDA PBE PBE-D

C–C (�A) 1.422 1.415 (�0.007) 1.426 (0.004) 1.426 (0.004)
d (�A) 3.356 3.351 (�0.005) 4.167 (0.811) 3.226 (�0.13)
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has been found to reach 2700 cm2 V�1 s�1,123 even up to 4900 cm2

V�1 s�1 at room temperature.124 Thus, graphene and GNRs have

attracted intensive interests for nanoelectronics of the next

generation.124–128

Here, we study the charge transport in 2D graphene sheets:

single layer graphene (SLG) and bilayer graphene (BLG), as well

as 1D GNRs: including AGNRs and ZGNRs. In graphene,

which has a covalently bonded conjugated structure, the effective

mass is zero and the electron’s velocity near the Dirac point is

about 108 cm s�1.121,129 Das Sarma et al.121 suggest the equivalent

electron de Broglie wavelength can be about 3.5 nm for an

unphysically large 2D electron density n ¼ 1014 cm�2. So the

electron coherence length is close to the acoustic phonon wave-

length and is much longer than the bond length, as show in

Fig. 3. And the LA phonon DP theory is used to describe the

charge transport in graphene.

3.1.1. Graphene sheets. Two kinds of graphene sheets are

discussed, i.e., SLG and BLG, as shown in Fig. 4. The first-

principles geometry optimizations and band structure calcula-

tions are performed by the PAW method as implemented in
This journal is ª The Royal Society of Chemistry 2012
VASP. For SLG and 1D nanoribbons, there is only covalently

bonded interaction and no intermolecular interaction. Like other

authors,130–132 we employ the Perdew–Burke–Ernzerhof (PBE)133

generalized gradient approximation (GGA) here. However, there

exists non-covalent interaction between the two layers in BLG.

Local density approximation (LDA)85 and PBE have been shown

to be poor for description of weak non-covalent interaction.134

The recently developed PBE-D method135,136 includes dispersion

correction to account for intermolecular interactions. In order to

compare the performance of functionals, we use LDA, PBE, and

PBE-D methods in the geometry optimization and band struc-

ture calculation of BLG. A plane-wave cutoff energy of 600 eV

and the total energy convergence criterion of 10�4 eV for self-

consistent field iteration are used. A 64 � 64 � 1 Monkhorst–

Pack137 k-mesh is chosen. The atomic force converge criterion

is 0.005 eV �A�1. Vacuum layer thickness is set to be 30 �A.

The PBE optimized interatomic C–C distance is found to be

1.426 �A for SLG, in good agreement with the graphite experi-

ment value 1.422 �A.138 For BLG, as shown in Table 1, the

optimized C–C bond length is always very close to the experi-

mental value no matter what method is used. However,

the interlayer distance predicted by PBE shows a large value of

4.167�A, while the LDA and PBE-D’s results are both close to the

graphite experimental value of 3.356 �A. Other calculations also

show LDA139 and PBE-D140 provide quantitative description of

the interlayer interaction in BLG.

The calculated band structures of SLG and BLG are shown in

Fig. 5. It indicates that both are gapless and the VB and CB

intersect at the k-point of the Fermi level. When comparing the

band structures near the Fermi level, it is found that both VB and

CB of BLG appear in pair and the splittings are small as shown in

Fig. 5d. These reproduce well the previous results.129,141 From

Fig. 5d, it can be seen that the band structure calculated by LDA

at the optimized geometry is similar to that by PBE-D, but

somewhat different from that by PBE near the k-point due to the

different interlayer distance optimized by PBE. Min et al.142 have

given the band structure similar to that obtained by LDA and

PBE-D, calculated by GGA with the experimental structure.

Clearly, the difference in the band structure of BLG is caused

mainly by the different interlayer distance optimized, not by

different functionals used in the calculation. Then, through

stretching the lattices along the x and y directions, the elastic

constants and the DP constants can be determined. The lattice

constants are chosen to be 0.99a0, 0.995a0, a0, 1.005a0, 1.01a0,

respectively (while keeping b0 fixed). According

to C2D
x ¼ 1

S0

a20v
2E

va2
ja¼a0

, where S0 ¼ a0b0, the elastic constant

along the x direction is obtained. Correspondingly, after calcu-

lating the band structures at the deformed lattices, the DP
Nanoscale, 2012, 4, 4348–4369 | 4355
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Fig. 5 The band structures of (a) SLG; (b) BLG using PBE-D method; (c) around the Dirac-point k for SLG; (d) Dirac-point k for BLG using LDA,

PBE and PBE-D methods, respectively.
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constant can be obtained based on the formula Ei
1¼ a0vE/va|a¼a0

(here the i-th band edge is taken as the Fermi level position).

Finally, the charge mobility and the average relaxation time of

SLG and BLG are calculated by eqn (10) and (19), respectively.

All the relevant results are presented in Table 2. The calculated

mobility of SLG is about 3–4 � 105 cm2 V�1 s�1 at room

temperature that is in good agreement with Geim et al.143, who

obtained an experimental value of 4 � 105 cm2 V�1 s�1. Mean-

while, the theoretical electron relaxation time �13 ps for SLG
Table 2 The deformation constant E1, 2D elastic constant C2D, hole (electro
BLG along directions x and y at 300 K. The calculation of SLG is only studied
study the transport proprieties of BLG

System Method Direction E1 (eV) C2D (J m�2) m_

SLG PBE x 5.140 328.019 3.2
y 5.004 328.296 3.5

BLG LDA x 5.276 719.130 0.5
y 5.537 719.430 0.5

BLG PBE x 5.330 680.167 3.9
y 5.334 681.172 4.1

BLG PBE-D x 5.106 774.540 0.4
y 5.342 804.030 0.4

4356 | Nanoscale, 2012, 4, 4348–4369
is close to the experimental value of 20 ps.10 However, the

mobilities calculated for BLG using PBE method (�4 � 105 cm2

V�1 s�1) are somewhat different from those obtained with LDA

and PBE-D methods (�105 cm2 V�1 s�1), while the LDA and

PBE-D results are quite close at 300 K. This difference arises

from the fact that the optimized interlayer distance and in turn

the band structure by PBE method are different from those by

LDA and PBE-D methods. Some experimental studies have

indicated that the typical charge mobility in BLG may be much
n) mobility m_h(e) and hole (electron) relaxation-time s_h(e) for SLG and
with the PBE method, while LDA, PBE and PBE-D methods are used to

h (105 cm2 V�1 s�1) m_e (10
5 cm2 V�1 s�1) s_h (ps) s_e (ps)

17 3.389 13.804 13.938
12 3.202 13.094 13.221
18 1.294 4.691 10.021
03 1.104 4.262 9.105
49 4.484 16.158 17.966
78 4.636 16.206 18.019
52 1.098 4.519 8.116
75 1.107 4.286 7.697

This journal is ª The Royal Society of Chemistry 2012
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smaller than that in SLG,143,144 and recent first-principles calcu-

lations have suggested that the lower mobility in BLGmay result

from the lower electron group velocity and the nonlinear

dispersion near the bottom of the conduction band, as well as the

substantial differences in EPC in SLG and BLG.93,145 Borysenko

et al.92,93 examined the EPC of SLG and BLG by DFPT, and

suggested that the intrinsic scattering mechanism in BLG is

dominated by the long-wave acoustic phonon scattering, while

the optical phonon scattering is stronger in SLG than in BLG.

Based on the evaluation of EPC, they calculated the charge

mobilities of SLG and BLG by a full-band Monte Carlo simu-

lation, and the results are 9.5 � 105 cm2 V�1 s�1 for SLG and

1.7� 105 cm2 V�1 s�1 for BLG at room temperature. It shows that

the charge mobility of SLG is larger than that of BLG by DFPT

theory, which is consistent with the experimental findings, and

also consistent with our result with LDA or PBE-D functional,

but opposite to PBE functional. Overall, the geometry optimi-

zation, the band structure and mobility calculation of BLG

suggest that LDA can reasonably describe the non-covalent

interaction between the two layers, and presents results in good

agreement with PBE-D, which takes into account the dispersion

correction. Besides, from Table 2, the electron and holes’

mobility are close to each other in SLG, while the difference is

more pronounced in BLG. This can be attributed to the fact that

the interaction between the two sheets influences the curvatures

of CB and VB bands.

To summarize, we have discussed the charge mobility of SLG

and BLG based on the deformation potential theory, beyond the

effective mass approximation. Especially for BLG, three

different functionals are compared in order to better describe the

non-covalent interaction between layers. The calculated mobility

values are in excellent agreement with the experiments of Geim

et al. as well as with other theoretical results. And we find that

LDA can satisfactorily describe the weak intermolecular inter-

action in BLG. The difference in charge transport in SLG and

BLG in our calculations lies in the band structures, namely, the

interlayer couplings result in different band curvature as well as

in elastic constant, which shed light on understanding the layer

thickness dependence of mobility.146,147
Fig. 6 Schematic representation of (a) armchair (N ¼ 18) and (b) zigzag

(N ¼ 11) edged graphene nanoribbons. The red dashed arrows are the

stretching directions.

This journal is ª The Royal Society of Chemistry 2012
3.1.2. Graphene nanoribbons. In this part, we are concerned

with the size-dependent carrier mobility of graphene nano-

ribbons AGNRs and ZGNRs, as shown in Fig. 6, where the edge

carbons are modeled by hydrogen passivation to avoid any

dangling bond. The number of carbon atoms between the two

edges, N, represents the ribbon’s width. It is our primary interest

to know how to cut a graphene sheet to engineer the transport

properties148 from theoretical prediction.149 Here, the charge

mobilities for different ribbon’s width of AGNRs and ZGNRs

are discussed. We have shown that the width of ribbon plays an

important role in tuning the polarity of charge transport.103

The geometry optimization and the band structure calcula-

tions are carried out using PAW method with PBE exchange

correlation functional as implemented in VASP. The energy

cutoff is 500 eV and the first Brillouin zone is sampled by

(1 � 1 � 200) k-points. The structure optimization requests all

the atomic forces less than 0.01 eV �A�1. For calculation of

mobility, the parameters of effective massm* (when appropriate),

elastic constant C1D and DP constant E1are determined. The

effective mass is calculated by fitting the bottom of CB or the top

of VB near the G-point. The detailed calculation method of the

other parameters is similar to that shown above for graphene in

the last part and here we just give the results.

3.1.2.1 Armchair graphene nanoribbon (AGNR). The band

structures of AGNRs of N ¼ 12, 13, and 14 are shown in Fig. 7.

AGNRs are semiconductors with the band gaps of 0.52, 0.88 and

0.15 eV for N ¼ 12, 13, and 14, respectively. The relationship the

between band gap and ribbon’s width D3p $ D3p+1 > D3p+2(¼0)

(p is a positive integer), proposed by Son and coworkers150 is

satisfied. The band gap of N¼ 14 is calculated to be not zero due

to the edge passivation by hydrogen atoms. The band structure

of N-AGNRs with N ¼ 12 and 13 exhibits a large band gap with

a parabolic dispersion around G-point and the effective mass is

obtained by parabolic fit the band energies within a few kBT of

the band edge. However, with N ¼ 14 the band structure shows

a small band gap and nonlinear dispersion around the G-point.

Following Raza and Kan,151 we examine the band structure of

14-AGNR within a few tens of meV near the G-point and find

that both VB and CB are parabolic (see Fig. 7b) and the fit is

valid for around 10 meV. Thus we simply apply the effective mass

approximation eqn (21) here.

To obtain the elastic constant and DP constant, the total

energies and band structures at five chosen deformed lattices are

calculated: a0, 0.995a0, 1.005a0, 1.01a0, and 0.99a0. The band

edge shifts of the CBM and the VBM as a function of lattice

dilation for N ¼ 12, 13, and 14 are shown in Fig. 8a, for which

linear fit is almost perfect. The charge mobilities and relaxation

times for AGNRs (N ¼ 9–17, 33–44) are calculated by 1D

effective mass approximation formula eqn (23). All the results

are collected in Table 3. It is found that (i) electron and hole

exhibit very close effective mass in the range 0.057m0–0.077m0,

comparable to the experimental value of 0.06m0 by Novoselov

et al.6 where m0 is the bare mass of electron; (ii) the elastic

constant increases with the ribbon’s width of AGNRs due to the

enhanced rigidity of the system; (iii) relaxation-time is calculated

to be several picoseconds as in the graphene sheet, close to the

experimental value of 20 ps;10 (iv) DP constant shows a signifi-

cant width dependence. It is noted that for N ¼ 3k, where k is an
Nanoscale, 2012, 4, 4348–4369 | 4357
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Fig. 7 (a) The band structures of N-AGNRs (N ¼ 12, 13, and 14) from DFT calculations. (b) The band structure of 14-AGNR, within a few tens meV

of the G-point. The red and green dashed lines represent the CB and VB, respectively. Reprinted with permission from ref. 103. Copyright 2009 American

Chemical Society.

Fig. 8 (a) Band edge shifts as a function of the lattice dilation; (b) hole

and electron mobility dependent on the width N of the AGNRs.

Reprinted with permission from ref. 103. Copyright 2009 American

Chemical Society.
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integer, the DP value for hole is about one order of magnitude

larger than that for electron, while forN¼ 3k + 1 and 3k + 2, the

situation is just the opposite. According to eqn (23), this gives rise
4358 | Nanoscale, 2012, 4, 4348–4369
to about two orders of magnitude difference in the mobilities for

electrons and holes, see Fig. 8b.

To understand the relationship between DP constant and the

ribbon’s width, we examine the frontier molecular orbitals at the

G-point, i.e., the highest occupied molecular orbital (HOMO) for

the hole and the lowest unoccupied molecular orbital (LUMO)

for electron, see Fig. 9, where the red dashed line stands for the

transport direction as well as the stretching direction. ForN¼ 12

(3k), it is found that the bonding direction of HOMO is

perpendicular to the dilation direction and it is of anti-bonding

character along the transport direction. While for the LUMO,

the bonding direction is along the stretching direction. The

bonding state is stable and anti-bonding state is unstable, which

means the site energy of anti-bonding state is more prone to

change when the structure is deformed. The band-edge shift due

to ribbon stretching comes from the site energy change. Thus, DP

constant of hole state (HOMO) is larger than that of electron

state (LUMO), and hole is scattered more strongly by acoustic

phonons than electron. However, forN¼ 13 (3k + 1) andN¼ 14

(3k + 2) (the N ¼ 14 case is not shown in Fig. 9, because it is

exactly the same as the N ¼ 13 case), the trend is just opposite,

and the mobility is much larger for hole than for electron.

3.1.2.2. Zig-zag graphene nanoribbon (ZGNR). The situa-

tion for ZGNRs is different from that for AGNRs. From the

band structures of ZGNRs (N ¼ 6, 7, and 8) (see Fig. 10), it is

noted that the CB and VB merge flatly near the Fermi level and

ZGNRs are gapless due to the midgap state from the edge. Such

band structure excludes the applicability of effective mass

approximation. Thus the Boltzmann transport formula eqn (10),

instead of eqn (23), is employed. By increasing the ribbon width,

it is noted that the mobility change is so small compared with

AGNRs and there is no size-dependent carrier polarity charge

(see Fig. 11). Besides, the mobility is about two orders of

magnitude smaller than that of AGNRs, because ZGNRs

exhibits a much smaller bandwidth than AGNRs, and the elec-

tron in ZGNRs is more localized. However, the band structure

near the Fermi surface can be modulated by doping, and then the

mobility can be increased.
This journal is ª The Royal Society of Chemistry 2012
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Table 3 Calculated width of ribbon W, effective mass m*, deformational potential constant E1, the 1D elastic constants C1D, the electron and hole
mobility m, and the averaged value of relaxation-time s at 300 K for N-AGNRs with N ¼ 9–17, 33–35, and 42–44. Reprinted with permission from ref.
103. Copyright 2009 American Chemical Society

N W (nm) Carriers m* (0.01 m0) E1 (eV) C1D (1011 eV cm�1) m (104 cm2 V�1 s�1) s (ps)

9 1.176 e 7.21 1.11 3.24 108.11 44.33
h 6.04 11.00 1.44 0.49

10 1.300 e 7.87 10.992 3.59 1.07 0.48
h 5.71 2.47 34.30 11.14

11 1.420 e 6.79 10.838 3.81 1.46 0.56
h 6.51 1.904 50.34 18.63

12 1.543 e 7.17 1.230 4.29 117.36 47.85
h 6.26 10.904 1.83 0.65

13 1.681 e 7.68 10.972 4.64 1.44 0.63
h 6.00 2.32 46.71 15.92

14 1.792 e 6.88 10.892 4.84 1.80 0.70
h 6.65 1.870 64.14 24.26

15 1.913 e 7.23 1.312 5.35 127.26 52.29
h 6.43 10.960 2.17 0.79

16 2.036 e 7.63 10.954 5.70 1.79 0.78
h 6.23 2.21 59.74 21.15

17 2.156 e 6.99 11.158 5.87 2.03 0.81
h 6.81 1.842 77.35 29.96

33 41.19 e 7.02 1.77 12.70 172.835 69.02
h 6.68 19.2 4.906 1.86

34 42.39 e 7.17 10.84 12.80 4.520 1.84
h 6.61 2.34 110.072 41.32

35 43.60 e 7.03 18.9 12.98 4.801 1.91
h 6.88 1.91 130.120 51.8

42 52.24 e 6.94 1.81 17.11 212.163 90.66
h 6.69 11.19 6.278 2.39

43 53.48 e 7.07 10.96 17.34 6.112 2.46
h 6.62 2.21 165.953 62.42

44 54.79 e 7.06 10.80 17.45 6.214 2.50
h 6.70 2.19 185.035 70.8
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To conclude, the charge mobility of two different 1D graphene

nanoribbons AGNRs and ZGNRs are discussed. The result

indicates that: AGNRs exhibit a distinct 3k alternating behav-

ior, for N ¼ 3k, the electron’s acoustic phonon scattering

mobility reaches 106 cm2 V�1 s�1, while the hole’s mobility is 104

cm2 V�1 s�1; For N ¼ 3k + 1 and 3k + 2, the hole’s mobility is

4–8 � 106 cm2 V�1 s�1 and the electron’s is about 104 cm2 V�1 s�1.

However, there is no size-dependent polarity change in ZGNRs.
3.2. Graphdiyne

Carbon allotropes, such as fullerene152 and carbon nanotubes,5

have grown as an important research area because of their

potentially interesting electronics application in electronics. One

new carbon allotrope, graphyne, was theoretically predicted in

1987.153 After that, efforts have been devoted to chemical

synthesis of such a structure, but only some small pieces of

graphdiyne have been obtained.154,155 Only until recently, a large

area (�3.6 cm2) of graphdiyne film has been successfully

prepared which was shown to exhibit good semiconducting

properties.156 Fascinating properties including good stability,

large third-order nonlinear optical susceptibility, high fluores-

cence efficiency, high thermal resistance, good conductivity or

superconductivity, hydrogen storage, and through-sheet trans-

port of ions have been predicted.157–161 Graphdiyne is a 2D sheet

with one-atom thickness just like graphene, and it contains two

acetylenic (diacetylenic) linkages between carbon hexagons,156 as

we can see in Fig. 12.
This journal is ª The Royal Society of Chemistry 2012
The charge transport of graphdiyne has been investi-

gated.104,130 Here, we present the electronic structures and charge

mobilities for graphdiyne sheet (GDS) and its 1D nanoribbons

(GDRs) based on the Boltzmann transport theory and DP

theory.

3.2.1. Graphdiyne sheet (GDNS). The geometry optimization

and band structure calculation are carried out using VASP with

the PBE functional and the plane-wave cutoff energy is 500 eV.

The structural optimization requests the maximum force allowed

on each atom is 0.005 eV �A�1. The k-mesh is chosen to be 64 �
64 � 1 for the calculations of relaxation time and mobility. The

optimized lattice constant is a0 ¼ 9.48 �A, in good agreement with

the previous value of 9.44 �A calculated by Narita et al.159 In

Fig. 13, a direct band gap of 0.46 eV is found at the G-point which

means that the graphdiyne sheet is a semiconductor.153,158 And

both the VB and CB are degenerate at G-point.

For obtaining the elastic constant and the DP constant, the

unit cell is reconstructed to be rectangular (see Fig. 12b). The

super cell is dilated along directions of a and b in the range

of�0.1%. The fitting curves are given in Fig. 14. Finally, eqn (10)

and (19) are used to calculate the mobility and relaxation time,

respectively. The results are listed in Table 4.

The results show that the intrinsic in-plane charge mobilities

along directions of a and b are close to each other for both

electron and hole. Besides, due to different DP constants for the

electron and the hole, it is noticed that electron mobility is about

one order of magnitude higher than hole mobility at room
Nanoscale, 2012, 4, 4348–4369 | 4359
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Fig. 9 The G-point HOMO and LUMO wave functions for AGNRs

with (a) N ¼ 12 and (b) N ¼ 13. The red dashed line stands for the

direction of stretching. Reprinted with permission from ref. 103. Copy-

right 2009 American Chemical Society.

Fig. 10 DFT band structures for N-ZGNRs (N ¼ 6, 7, and 8). The red

and green dashed lines denote the CB and VB, respectively.

Fig. 11 The hole (electron) mobility for N-ZGNRs calculated as

a function of ribbon width N. Reprinted with permission from ref. 103.

Copyright 2009 American Chemical Society.

Fig. 12 Schematic representation of a single layer graphdiyne sheet. (a)

The rhombus drawn with a red dashed line is the primitive cell for

geometry optimization and band structure calculations; (b) the super cell

used for transport calculations (dashed rectangle). Reprinted with

permission from ref. 104. Copyright 2011 American Chemical Society.

Fig. 13 DFT calculated band structure of a single layer graphdiyne

sheet. The CB and VB are both degenerate at G-point. The Brillouin zone

with the chosen high symmetry k-points is also shown. Reprinted with

permission from ref. 104. Copyright 2011 American Chemical Society.
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temperature. The DP constant describes the interaction strength

of the charge carrier with the acoustic phonon. It indicates that

the hole–acoustic phonon interaction is stronger than the elec-

tron. It can be understood by checking the frontier molecular

orbitals related to transport. Fig. 15 gives the HOMO and

LUMO at G-point in the directions of a and b. It is found that the

HOMO exhibits anti-bonding character between carbon hexa-

gons and diacetylenic linkages whereas the LUMO exhibits

bonding feature. Therefore, the hole state shows more nodes

than the electron state in both directions a and b. Generally, the

band shift upon stretching comes from the site energy change. If
4360 | Nanoscale, 2012, 4, 4348–4369
an orbital has more nodes in the stretching direction, its energy

will be more prone to change against any structural deformation,

so that its DP constant is larger. As a result, the DP constant of

hole is larger than that of electron in either a or b direction.

Meanwhile, comparing the transport properties of GDS in

Table 4 with those of SLG in Table 2, it is found that the

calculated mobility of graphene is larger than that of graphdiyne,

but both are as high as 105 cm2 V�1 s�1, showing that both are

excellent low dimensional transport materials. Besides, the

GDS’s elastic constant is only half of the SLG’s, which indicates

graphdiyne is more flexible.
This journal is ª The Royal Society of Chemistry 2012
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Fig. 14 (a) The band edge shifts of VB and CB with respect to the lattice

dilation along the direction of a for the graphdiyne sheet, which give the

deformation potential constant; (b) the total energy of a unit cell as

a function of lattice deformation along the directions of a and b, which

give the elastic constant. Reprinted with permission from ref. 104.

Copyright 2011 American Chemical Society.

Table 4 The calculated deformation potential constant E1, the 2D
elastic constant C2D, the hole (electron) mobility m, and the averaged
value of scattering relaxation-time s, along the a and b directions at 300 K
for the single layer graphdiyne sheet. Reprinted with permission from ref.
104. Copyright 2011 American Chemical Society

System Carriers C2D (J m�2) E1 (eV) m (104 cm2 V�1 s�1) s (ps)

GDS_a h 158.57 6.30 1.97 1.94
e 2.09 20.81 19.11

GDS_b h 144.90 6.11 1.91 1.88
e 2.19 17.22 15.87

Fig. 15 G-Point degenerate HOMO and LUMO density distributions

for a singer layer graphdiyne sheet. Note that the number of nodes for

HOMO is more than that of LUMO in either direction, which leads to

more pronounced scatterings by the longitudinal acoustic phonon for

hole than electron. Reprinted with permission from ref. 104. Copyright

2011 American Chemical Society.

Fig. 16 Schematic representation of five different GDNRs. D1 and D2

are divan GDNRs with two and three carbon hexagons in width

respectively. Z1, Z2 and Z3 are zigzag GDNRs with two, three and

alternating width, respectively. Reprinted with permission from ref. 104.

Copyright 2011 American Chemical Society.

Table 5 Band gap, effective mass (mh
* and me

*), deformation potential
constants for VB and CB (Ev and Ec), elastic constant C1D, carrier
mobility m at 300 K for five GDNRs. Note that mh and me are comparable
with those obtained with the effective mass approximation mh

* and me
*.

Reprinted with permission from ref. 104. Copyright 2011 American
Chemical Society

D1 D2 Z1 Z2 Z3

Band gap 0.954 0.817 1.205 0.895 1.015
mh

* (in m0) 0.086 0.087 0.216 0.149 0.174
me

* (in m0) 0.081 0.086 0.281 0.174 0.207
Eh (eV) 7.406 6.790 4.386 4.786 4.776
Ee (eV) 2.006 1.730 1.972 2.000 2.054
C1D (1010 eV cm�1) 1.244 1.864 1.035 1.787 1.420
mh (10

3 cm2 V�1 s�1) 1.696 2.088 0.755 1.815 1.194
me (10

3 cm2 V�1 s�1) 18.590 34.241 2.692 9.127 5.329
mh

* (103 cm2 V�1 s�1) 0.711 1.253 0.426 1.073 0.679
me

* (103 cm2 V�1 s�1) 10.580 19.731 1.418 5.015 2.829
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3.2.2. Graphdiyne nanoribbons (GDNRs). In parallel to gra-

phene, we also examine theoretically the 1D graphdiyne nano-

ribbons. The 2D graphdiyne sheet is cut into various 1D

nanoribbons along different edges. Here, five types of GDNRs

with different numbers of carbon hexagons between edges are

chosen, as shown in Fig. 16, where D1 and D2 are divan-like

GDNRs (DGDNRs), Z1, Z2 and Z3 are zigzag GDNRs

(ZGDNRs) with different widths. The ribbon widths of these five

GDNRs are 12.5 �A, 20.7 �A, 19.2 �A, 28.6 �A and 28.6 �A for D1,

D2, Z1, Z2, and Z3 respectively.

The electronic structure and transport parameters are calcu-

lated as described before. The charge mobilities are calculated by

both Boltzmann transport equations eqn (10) and (19) as well as

by 1D effective mass approximation eqn (23). The results are

compared in Table 5. The band structures of GDNRs are given

in Fig. 17. It shows that the GDNRs are all semiconductors with

the smallest band gap of about 0.8 eV for D2.

From Table 5, it is noted that (i) the effective masses of

DGDNRs are smaller than those of ZGDNRs, which indicates
This journal is ª The Royal Society of Chemistry 2012 Nanoscale, 2012, 4, 4348–4369 | 4361
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Fig. 17 The calculated band structures of five GDNRs. Reprinted with permission from ref. 104. Copyright 2011 American Chemical Society.

Fig. 18 G-Point HOMO and LUMOwave function for GDNRs D1 and

Z1. Note that the LUMOs of both D1 and Z1 are more delocalized than

those of HOMOs along the horizontal direction, which leads to larger

electron mobility than hole. Meanwhile, the LUMO of D1 is more

delocalized than that of Z1, suggesting that the electron mobility of D1 is

larger than that of Z1. Reprinted with permission from ref. 104. Copy-

right 2011 American Chemical Society.
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DGDNRs have better charge transport properties than

ZGDNRs; (ii) the DP constant E1 for hole is much larger than

for electron for all the GDNRs, same as in the graphdiyne sheet.

From the frontier molecular orbitals at G-point of D1 and Z1, as

shown in Fig. 18, the anti-bonding feature between carbon

hexagons and diacetylenic linkages has been found for the

HOMO, whereas the bonding feature is found for the LUMO. So

as explained for GDS, for all GDNRs the hole is more strongly

scattered by acoustic phonon than the electron and the intrinsic

electron mobility is significantly larger than the hole mobility.

Besides, comparing the LUMO of D1 and Z1, the LUMO of D1

is more delocalized in the direction of ribbon axis than that of Z1,

this is the reason why mobilities of DGDNRs are all larger than

those of ZGDNRs. All of these suggest that DGDNRs are more

favorable than the ZGDNRs for the electron transport; (iii) the

elastic constant C1D increases with the width of the ribbon.

According to eqn (23), the charge mobility increases with the

width of the ribbon; (iv) the mobilities from the effective mass

approximation eqn (23) are in good agreement with those from

the Boltzmann transport formula eqn (10), since the band

structure profile is parabolic near the G-point.

To summarize this part, the transport properties of the novel

carbon allotropes – graphdiyne sheet and its five types of one-
4362 | Nanoscale, 2012, 4, 4348–4369
dimensional nanoribbons are discussed based on Boltzmann

transport theory with the relaxation time approximation and the

deformation potential theory. The calculations indicate that the

intrinsic charge mobility of the graphdiyne sheet can reach about

105 cm2 V�1 s�1 at room temperature, which is similar to the

graphene sheet. For 1D ribbons, the electron mobility of

GDNRs is as high as 104 cm2 V�1 s�1 at room temperature, which

is an order of magnitude higher than the hole. We notice that Bai

et al.130 also discussed the charge mobility of 1D GDNRs based

on the DP theory and effective mass approach. They calculated

two kinds of GDNRs of different widths, with the mobilities in

the range of 102 to 106 cm2 V�1 s�1 at room temperature. Besides,

they found, independently, that the mobilities of electrons are

always larger than those of holes. Our results show, that the

charge mobility increases with the ribbon width within the same

class of GDNRs, and the mobility of DGDNRs is larger than

that of ZGDNRs. It suggests that the charge mobility can be

improved and controlled through modulating the graphdiyne

nanoribbon’s size and edge, just like in graphene nanoribbons.

We conclude that the novel carbon nanomaterial graphdiyne is

a promising candidate for nanoelectronic engineering and

optoelectronic devices.
3.3. Oligoacenes

Usually, due to strong electron–phonon coupling in organic

semiconductors, the electron is localized, and the intermolecular

electron coupling (V) is much less than the molecular charge

reorganization energy (l). In this case, the small polaron hopping

model has been widely employed39 to investigate the transport

mechanism in organic crystals. However, in some closely packed

organic crystals, the intermolecular frontier p-orbital overlap is

appreciable which leads to band-like transport behavior as in

inorganic semiconductors,40 such as in oligoacenes33 and

DAcTTs.162 The bandwidth of oligoacenes and DAcTTs can

reach about a few hundred meV along the stacked direction33,43

and the effective masses of electrons in these organic crystals are

comparable to the mass of a free electron m0. For example, in

C10-DNTT and C12-BTBT, the effective masses along the lattice

vector a, are 0.87m0 and 1.16m0,
43 respectively. So it is reasonable

to apply a band model to compute charge carrier mobilities in

these systems. In this and the next parts, we only discuss the role

of acoustic phonon scattering on the charge transport properties

in oligoacenes and DAcTTs with DP theory and Boltzmann
This journal is ª The Royal Society of Chemistry 2012
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Fig. 19 Crystal structures of oligoacenes: (a) naphthalene, (b) anthracene, (c) tetracene, and (d) pentacene. Reproduced from ref. 37 with permission by

Science China Press.
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transport theory, while the effect of optical phonon scattering

has been completely ignored.

The crystal structures of oligoacenes including naphthalene,

anthracene, tetracene, and pentacene, are shown in Fig. 19. It is

noticed that there are two molecules in one unit cell and the

molecular packing forms herringbone structure.

Though LDA is known to be unsatisfactory for the description

of weak intermolecular interactions, some previous reports also

suggest that the accuracy of LDA for the p-stacked molecular

crystals is reasonable.163,164 In Section 3.1.1, we have shown that

LDA performs well in the description of non-covalent interac-

tions in BLG, and yields the results in good agreement with PBE-

D which takes into account the dispersion correction. Therefore,

here, LDA is used for the lattice optimization and band structure

calculation. The discrepancy in lattice constants between the

LDA results and the experimental values165–167 is within 5%. The

plane-wave energy cutoff is 600 eV and the k-mesh is chosen to be

8 � 8 � 8 for all the oligoacene crystals in electronic self-

consistent calculations. However, this small k-mesh is not

enough to perform numerical differentiation to obtain the group

velocity. Furthermore, the integration in eqn (10) and (19) need
Fig. 20 LDA band structure and DOS of naphthalene. The reciprocal

coordinates of high-symmetry points are G ¼ (0, 0, 0), Y ¼(0.5, 0, 0), K ¼
(0.5, 0, 0.5), Z ¼ (0, 0, 0.5), B ¼(0, 0.5, 0), A ¼(0.5, 0.5, 0), D ¼(0.5,

0.5, �0.5), respectively. The red dashed line represents the position of the

Fermi level.

This journal is ª The Royal Society of Chemistry 2012
much more k-points to get converged numerical results. So we

need to interpolate the band structure to make a total of 8000

k-points in the first Brillouin zone. The band structure and

density of states (DOS) of naphthalene are shown in Fig. 20.

Naphthalene is an indirect semiconductor, and the band widths

of VB and CB are about a few hundred meV. For example, the

CB width along a direction is 293 meV.

The fitting procedure as described in Section 2.4 is used to get

the elastic constants and DP constants for all the oligoacenes.

Only the results along a and b lattice axes are shown since the in-

plane mobilities are dominant. Intrinsic charge mobility is

calculated by eqn (10) at room temperature. All the results for

oligoacenes are shown in Table 6. It is noted that (i) the elastic

constants of naphthalene and anthracene are close to each other

and same applies, for tetracene and pentacene. The elastic

constants along the b direction are larger than those along the

a direction, which is in qualitative agreement with the experi-

mental results;168 (ii) DP constants of the hole are larger than

those of the electron, suggesting that the hole scattering by LA

phonon is stronger than the electron; (iii) the molecular length

dependency of mobility is masked by different crystal packing

modes. The hole mobilities are found to be about a few tens

of cm2 V�1 s�1, for example, naphthalene’s mobility is around

50.4–74.4 cm2 V�1 s�1 at room temperature. These values are

three times smaller than those obtained by Wang et al.,36 based

on the Holstein–Peierls model and electron–optical phonon

coupling only, where the hole mobility of naphthalene was found

to be around 150–200 cm2 V�1 s�1. It may suggest that the

acoustic phonon scattering cannot be neglected in the charge

transport of these molecule crystals; (iv) the experimental

mobility of oligoacene is about1 cm2 V�1 s�1 at room tempera-

ture,169–171 which is much smaller than our calculation. This

might be attributed to the impurities or defects in materials. The

hole mobility of ultrapure pentacene single crystal is reported to

be 35 cm2 V�1 s�1 at room temperature,21 which is in good

agreement with our result. (v) Most organic semiconductors are

hole transport (p-type) materials, because the injected charges

are mostly holes and inherently, there are much more electron

traps than hole traps in organic materials. But our theoretical

results indicate that for anthracene (a direction) and pentacene

(b direction), the electron mobility can be as high as more than
Nanoscale, 2012, 4, 4348–4369 | 4363
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Table 6 Calculated elastic constant C3D, hole (electron) deformation potential constant E1 and the hole (electron) mobility m for oligoacenes along
lattice directions a and b at 300 K

Naphthalene Anthracene Tetracene Pentacene

Ca (10
9 N m�2) 16.24 16.36 13.80 14.45

Cb (10
9 N m�2) 21.10 19.93 19.86 19.83

Ea
h (eV) 1.31 1.12 1.79 2.10

Ea
e (eV) 1.39 1.38 0.47 0.79

Eb
h (eV) 0.96 0.42 1.60 1.81

Eb
e (eV) 0.56 0.87 0.53 0.38

ma
h (cm2 V�1 s�1) 50.4 19.2 10.6 15.2

ma
e (cm2 V�1 s�1) 39.8 245 24.5 27.7

mb
h (cm2 V�1 s�1) 74.4 42.2 92.5 55.6

mb
e (cm2 V�1 s�1) 35.3 15.4 87.6 295

Fig. 21 Temperature dependence of hole and electron mobilities along

a and b directions for naphthalene. The power law with factor �1.5 is

shown in the figure which describes the temperature dependence of

charge carrier mobility with the effective mass approximation. Repro-

duced from ref. 37 with permission by Science China Press.

Fig. 22 The crystal structure of C8-BTBT, (a) a–c plane and (b)

a–b plane.

Pu
bl

is
he

d 
on

 1
4 

M
ay

 2
01

2.
 D

ow
nl

oa
de

d 
by

 T
si

ng
hu

a 
U

ni
ve

rs
ity

 o
n 

07
/0

4/
20

14
 0

9:
48

:1
8.

 
View Article Online
two hundred cm2 V�1 s�1 due to the much smaller DP constant

and small ‘‘effective mass’’ as shown in Table 6.

The temperature-dependent hole and electron mobilities of

electron and hole along the a and b directions of naphthalene is

depicted in Fig. 21. The temperature effect arises from the

distribution function in eqn (10) and the mobility manifests

a typical power law temperature dependence, owing to the

assumption of band transport mechanism in DP theory. The

calculated temperature dependence can be approximated as m f

T�1.5, as manifested in the effective mass approximation eqn (22).

3.4. Diacene-fused thienothiophenes (DAcTTs)

Newly discovered diacene-fused thienothiophenes (DAcTTs)162

have been demonstrated to possess high mobility and air

stability.22,23,172–175 For example, for 2,7-dioctyl[1]benzothieno

[3,2-b][1]benzothiophene (C8-BTBT, Fig. 22), the hole mobility

has been shown to be as high as 31 cm2 V�1 s�1 from solution

process.23,172,173 It is suggested that the intermolecular hydro-

phobic interaction between alkyl chains effectively enhances

intermolecular interaction in the BTBT core layers, favoring

charge transport. DAcTTs have been found to exhibit a band-

like transport property. Temperature-dependent Hall-effect

measurements of 2,9-didecyl-dinaphtho[2,3-b:20,30-f]thieno[3,2-
b]thiophene (C10-DNTT) solution-crystallized OFET indicate

that the mobility increases with decreasing temperature.22
4364 | Nanoscale, 2012, 4, 4348–4369
Theoretical calculations showed that DAcTTs have a low-lying

HOMO energy level, 5.58 eV for BTBT and 5.18 eV for DNTT,

favoring air stability. The hole’s reorganization energy of dia-

nthra[2,3-b:20,30-f]thieno[3,2-b]thiophene (DATT) is calculated

to be 86 meV, which is smaller than that of pentacene (94 meV).

Besides, the herringbone packing structure could enhance the

intermolecular coupling, such as in DATT, with charge transfer

integral to be 88 meV for HOMO.176 The high charge mobilities

can be attributed to strong electronic coupling interaction

between neighbouring molecules and small intramolecular reor-

ganization energy.30,177 Here, we investigate the charge transport

in DAcTTs, i.e. C8-BTBT, DNTT and DATT, with molecular

structure shown in Fig. 23, by employing the acoustic phonon

DP theory model and Boltzmann transport theory with relaxa-

tion time approximation at first-principles level.

The geometric optimization and band structure calculation are

performed by DFT with the LDA functional in the VASP

package. The lattice constants and the atomic coordinates have

been determined by X-ray diffraction by Takimiya et al.,173,176,178

and are further optimized by DFT. The structural optimization is

done with the maximum force allowed on each atom being

0.01 eV �A�1 and the plane-wave energy cutoff of 600 eV. For
This journal is ª The Royal Society of Chemistry 2012
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Fig. 23 The chemical structures of diacene-fused thienothiophenes

(DAcTTs): C8-BTBT, DNTT and DATT.

Fig. 24 The DFT-calculated band structure and DOS of C8-BTBT. The

reciprocal coordinates of the high-symmetry points are G ¼ (0 0 0), X ¼
(0.5 0 0), Y¼ (0 0.5 0) and Z¼ (0 0 0.5), respectively. The red dashed line

is the position of the Fermi level.

Table 7 The calculated VB (CB) W, elastic constant C, hole (electron)
deformation potential constant E and the hole (electron) mobility m for
DAcTTs along a and b directions at 300 K

C8-BTBT DNTT DATT

Wa
h (eV) 0.84 0.33 0.20

Wa
e (eV) 0.29 0.16 0.15

Wb
h (eV) 0.57 0.24 0.17

Wb
e (eV) 0.29 0.20 0.24

Ca (10
9 N m�2) 20.51 18.6 19.3

Cb (10
9 N m�2) 15.53 13.2 14.3

Ea
h (eV) 1.65 1.76 1.99

Ea
e (eV) 2.64 0.39 0.56

Eb
h (eV) 3.55 0.97 0.46

Eb
e (eV) 1.13 0.57 0.76

Fig. 25 (a) The band energy of VBM (EVBM) and CBM (ECBM) with

respect to the core level (Ecore) with uniform dilation along a direction for

C8-BTBT; (b) the total energy of a unit cell as a function of lattice

deformation along a and b directions for C8-BTBT with parabolic fitting.
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C8-BTBT, the SCF calculation has been done with 10 � 10 � 1

grid in k-space and the band structure along the high symmetry

line and DOS are shown in Fig. 24. It is found that C8-BTBT is

a direct band-gap semiconductor. Meanwhile C8-BTBT exhibits

a very large bandwidth, 0.84 eV for VB along the a direction.

The bandwidths of both VB and CB along c direction are both

exactly zero. To check this result, we redo a SCF calculation with

10 � 10 � 4 k-mesh and the band structure calculation. It

demonstrates that along c direction, the bandwidths of both VB

and CB are both nearly zero (10�5 eV). So, C8-BTBT is expected

to exhibit 2D transport behavior. We can also understand this

from the lattice structure: the long alkyl chain makes the elec-

tronic coupling to neighboring molecule in the c dimension

extremely weak and charge carriers are confined within a single

molecular layer. Both DNTT and DATT are indirect band-gap

semiconductors, with valence bandwidths being 0.33 eV and

0.20 eV respectively in the a direction, respectively. The band-

widths of the VB and CB of these three systems in a and

b directions are given in Table 7 for these three systems. The

results show that the herringbone packing structure leads to large

intermolecular interaction, suggesting band-like transport
This journal is ª The Royal Society of Chemistry 2012
mechanism. To calculate the DP constant E1 and the elastic

constant C, the lattice constants are stretched up to 3% (only

a and b directions are considered). For example, the band

structures and the total energies at 0.97a0, 0.98a0, 0.99a0, a0,

1.01a0, 1.02a0, and 1.03a0 are calculated. The band edge posi-

tions of the VB and CB as a function of the dilation along a is

shown in Fig. 25a, and the total energy as a function of the

dilation along directions of a and b are presented in Fig. 25b. The

elastic constant C is fitted by (E � E0)/V0 ¼ C(Dl/l0)
2/2. The DP

constants and the elastic constants of C8-BTBT, DNTT and

DATT are also given in Table 7. Finally, according to eqn (10),

the charge mobilities of C8-BTBT, DNTT and DATT are

calculated, which are given in Table 8. We also include some

experimental and other theoretical mobility values of these

materials in Table 8 for comparison.

From Tables 7 and 8, we find that (i) the bandwidths of these

materials are all very large, about a few hundred meV. Especially

for C8-BTBT, the bandwidth of VB along the a direction reaches

0.84 eV because of the stronger intermolecular interaction caused

by the alkyl chain. The alkyl chain can enhance the
Nanoscale, 2012, 4, 4348–4369 | 4365

http://dx.doi.org/10.1039/c2nr30585b


Table 8 The calculated electron (hole) mobility m for DAcTTs along
a and b directions at 300 K and mobilities of these materials reported by
others. The experimental results show mC8-BTBT > mDATT > mDNTT and
our results of hole mobility are in qualitative agreement with experi-
mental ones

C8-BTBT DNTT DATT

ma
h (cm2 V�1 s�1) 609.0 76.4 19.1

ma
e (cm2 V�1 s�1) 12.3 164.7 107.6

mb
h (cm2 V�1 s�1) 86 137.7 322.6

mb
e (cm2 V�1 s�1) 77.5 91.5 90.8

m (cm2 V�1 s�1) 9.1 (ref. 172)a 8.3 (ref. 175)a 16 (ref. 30)a

31 (ref. 23)a 1.9 (ref. 30)b 3.14 (ref. 30)b

a The mobility of the single crystal based OFETs in experiments at 300 K.
b The mobility from theoretical calculation based on the Marcus theory
of charge transfer rates at 300 K.

Fig. 26 Temperature dependence of hole and electron mobilities along

a and b directions for C8-BTBT. The power law with a factor �1.1 is

shown in the figure indicating a 2D transport behavior.
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intermolecular interaction in BTBT. The experiments do support

such observation: for unsubstituted-DNTT,175 charge mobility

has been measured to be 8.3 cm2 V�1 s�1 and for the alkylated-

DNTT,22 it becomes 12 cm2 V�1 s�1; (ii) due to the large band-

width and small DP constant, the charge mobilities of the three

DAcTTs are all very high, some directions of electron or hole

mobilities are even higher than a few hundred cm2 V�1 s�1 at

room temperature. For the hole mobility, the largest one is C8-

BTBT along the a direction (609 cm2 V�1 s�1), the second largest

is DATT along the b direction (322.6 cm2 V�1 s�1), and the lowest

is DNTT along the b direction (137.7 cm2 V�1 s�1). Our theo-

retical results agree with experimental ones in trend as showed in

Table 8. However, the theoretical values are much larger than the

experimental ones. Such a discrepancy might be due to the

following reasons: (a) the materials used in the experiment are

solution processed film, instead of ultrapure single crystals as in

oligoacenes; (b) here we have only considered the acoustic

phonon scattering and neglected scatterings by the optical

phonons, as well as the impurities and defects scatterings, which

are the dominant scattering mechanism in real systems; (iii)

comparing DAcTTs with oligoacenes, we find that the hole

mobility of DAcTTs is usually larger than those of oligoacenes in

the direction of lattice vectors. Theoretically, the intermolecular

interaction is the key to the mobility and its strength depends on

many factors, mainly on the intermolecular geometry. The

mobility of DAcTTs and oligoacenes investigated here are all in

the direction of crystallographic a and b axes, the so-called edge-

to-edge pair type. However, compared to the direction of (110)

and (�110), the so-called edge-to-face pair type, the intermolecular

interactions in oligoacenes in the edge-to-edge pair is smaller

because of less effective intermolecular contact in the a and

b directions.179,180 For DAcTTs, in the case of the edge-to-edge

pair type, the sulfur atoms can effectively interact intermolecu-

larly and the large HOMO coefficients on the sulfur atoms also

contribute to increase intermolecular overlap. These lead to

larger intermolecular interactions in DAcTTs than oligoacenes in

the a and b directions.162 For example, the largest transfer inte-

grals of HOMOs in the crystallographic a direction of DATT

and DNTT are 70 meV and 71 meV by DFT calculations,176

while those of the naphthalene and pentacene are 35.6 meV and

33.8 meV, respectively.179 So DAcTTs exhibit better transport

properties in these directions.
4366 | Nanoscale, 2012, 4, 4348–4369
Finally, the temperature dependence of hole and electron

mobilities along directions a and b for C8-BTBT is depicted in

Fig. 26. The temperature effect arises from the distribution

function in eqn (10) which manifests the typical power law

behavior, due to the intrinsic band transport mechanism in DP

theory. The temperature dependence can be approximated as

mf T�1.1, manifesting a 2D transport behavior, see eqn (24). The

result is in good agreement with the above analysis of the band

structure of C8-BTBT. However, the temperature-dependent

mobility of naphthalene (see Fig. 21) exhibits a 3D transport

behavior with power factor of �1.5. This difference is due to

different bandwidths along the c direction. The bandwidths of

VB and CB for naphthalene are 0.064 eV and 0.048 eV, respec-

tively (see Fig. 20), while they are nearly zero for C8-BTBT.

Therefore the two materials show different transport behaviors

according to eqn (10). From the lattice structure, the long alkyl

chain of C8-BTBT makes the electronic coupling to neighboring

molecule extremely weak in the c dimension and charge carriers

are confined within a single molecular layer, which is not the case

in naphthalene.

In summary, using Boltzmann transport theory and the DP

theory coupled with first-principles calculations, we have inves-

tigated the intrinsic charge mobility of three DAcTTs

compounds: C8-BTBT, DNTT and DATT, which have recently

been demonstrated with excellent charge transport property.

Our results of hole mobility show mC8-BTBT > mDATT > mDNTT at

300 K and this observation is in qualitatively agreement with

experiments and other theoretical calculations. Due to the

alkyl chains’ enhanced intermolecular interaction, C8-BTBT

exhibits a large bandwidth of 0.84 eV and a high hole mobility of

609 cm2 V�1 s�1. Besides, the temperature dependence of mobility

of C8-BTBT shows a 2D transport behavior, which is different

from that of oligoacenes.

From the discussion of charge transport in oligoacenes and

DAcTTs, it suggests that the current treatment only acoustic

phonon scattering is taken into account, while the effect of

optical phonon scattering has been completely ignored, which

can cause overestimation of mobilities. In comparison with new

carbon allotropes like graphene, graphdiyne and nanoribbons, it

is less obvious that neglecting polaronic effects is strictly valid

in organic crystals, but in general the mobilities predicted for
This journal is ª The Royal Society of Chemistry 2012
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oligoacenes and DAcTTs using this model are in reasonable

agreement with measured data.
4. Conclusions and outlook

The present review has been focused on first-principles prediction

of charge mobility for carbon and organic nanomaterials, based

onBoltzmann transport theory anddeformationpotential theory,

where LA phonon scatterings are modeled by uniform lattice

dilation.We calculate the charge mobilities of graphene sheet and

its various 1D nanoribbons, graphdiyne sheet and 1D nano-

ribbons, oligoacenes, as well as DAcTTs. We found that both

graphene and graphdiyne exhibit high charge mobilities, about

105 cm2 V�1 s�1 and 104 cm2 V�1 s�1, respectively at room

temperature. Interesting charge transport properties are predicted

for the nanoribbons. For graphene nanoribbons, it is found that

the polarity (electron or hole) of carriers is dependent on the

ribbon width when the edge is of armchair type, where a period-

icity of three is predicted: forN¼ 3k, the electronmobility at room

temperature can reach 106 cm2V�1 s�1 and the holemobility is only

104 cm2 V�1 s�1; for N ¼ 3k + 1 or 3k + 2, the hole mobility is

calculated to be �5 � 104 cm2 V�1 s�1 at room temperature, and

the electronmobility is about 104 cm2V�1 s�1. Such exotic behavior

arises from the frontier orbital’s bonding and anti-bonding

character along the transport direction. The transport model is

used based on the delocalized charged state scattered by acoustic

phonon. We extend our discussion to some organic molecular

crystals with close intermolecular packing structure, i.e., oligoa-

cenes and DAcTTs, where a delocalized band transport model is

appropriate. It is found that the bandwidth is typically around

a few tenths of an eV and the charge mobilities range from a few

tens to a few hundred cm2 V�1 s�1. We find that the LA phonon

scattering plays an important role in the charge transport of

organicmaterials and the temperature dependence ofmobilities of

these organics materials satisfy the power law.37

We show here that the Boltzmann transport theory under the

relaxation-time approximation and the LA phonon scattering

modeled by DP theory are good starting points for quantitatively

predicting the charge mobility through first-principles calcula-

tions, as demonstrated for the examples of the novel carbon and

organic materials. The electron–phonon coupling has been

modeled in a very simple way. The optical phonons and the

phonon dispersion effect have been completely ignored. Impurity

or disorders are not considered. We point out two directions for

further improvements: (i) under the band picture, electron–

phonon scatterings should be taken into account in a more

sophisticated way, for instance, by employing the density func-

tional perturbation theory with localization treatment96 to

calculate all types of phonons scattering and dispersion from

first-principles. (ii) for complex system where band description is

inappropriate and the electron–phonon coupling is strong,

a hybrid approach combining molecular dynamics for nuclear

motion and quantum mechanics for electronic structure ‘‘on the

fly’’ with consideration of their mutual influence,181 is expected to

bridge the hopping description and the band model. In one word,

modeling charge transport in organic nanomaterials at the first-

principles level is a formidable task and poses great challenges in

the description of electron–phonon coupling and the electron-

nuclear dynamics.
This journal is ª The Royal Society of Chemistry 2012
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