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ABSTRACT: We show here that the carrier mobility in the novel sp−sp2 hybridization
planar 6,6,12-graphyne sheet should be even larger than that in the graphene sheet. Both
graphyne and graphene exhibit a Dirac cone structure near the Fermi surface. However,
due to the sp−sp2 hybridization forming the triple bonds in graphyne, the electron−
phonon scattering is reduced compared with that of graphene. The carrier mobility is
calculated at the first-principles level by using the Boltzmann transport equation coupled
with the deformation potential theory. The intrinsic mobility of the 6,6,12-graphyne is
4.29 × 105 cm2 V−1 s−1 for holes and 5.41 × 105 cm2 V−1 s−1 for electrons at room
temperature, which is found to be larger than that of graphene (∼ 3 × 105 cm2 V−1 s−1).

SECTION: Energy Conversion and Storage; Energy and Charge Transport

Graphene as a promising carbon-based electronic material
has attracted tremendous interest of research. The exotic

electronic properties of graphene originate from its unusual
band structure, featuring Dirac points and cones. The linear
energy−momentum relationship of graphene causes charge
carriers in it to behave as massless Dirac fermions that travel at
a speed of 106 m s−1.1 The existence of Dirac cones is also
responsible for an anomalous quantum Hall effect1−3 and high-
temperature superconductivity.4 Dirac cones and their
associated transport properties had been considered as a
unique feature of graphene related to its hexagonal symmetry
until recently; Görling and his colleagues predicted by first-
principles band structure calculations that Dirac cones exist in
materials other than graphene.5 The materials that they
investigated are a novel type of two-dimensional (2D) carbon
allotropes named graphyne, a family of low-energy carbon
phases that consist of sp2 and sp hybridized carbon atoms,
which was first proposed by Baughman et al. in 1987.6 Görling
et al.5 showed that Dirac points and cones not only exist in the
α- and β-graphyne with hexagonal symmetry but also in the
6,6,12-graphyne with rectangular symmetry, even in graphynes
containing heteroatoms.7 Their findings revealed that a wealth
of 2D materials with various symmetries and chemical
compositions could feature Dirac cones and extremely high
carrier mobilities and await to be discovered.
So far, only building blocks and cutouts of finite-size

graphynes have been synthesized, but experimentalists are
taking the very first steps toward the fabrication of extended 2D
materials. For instance, a large area (∼3.6 cm2) of a graphdiyne
thin film, which is a carbon allotrope containing diacetylenic
linkages, was recently synthesized by Li et al. on top of a copper
surface via a cross-linking reaction.8 The chemical vapor

deposition of organic precursor molecules on metal surfaces is
anticipated to open a new route to prepare 2D graphyne sheets.
Pioneering electronic structure calculations on graphynes and
graphdiynes have provided a fundamental understanding
toward the sp2−sp hybridized 2D materials, including the
recent discovery of Dirac cones in various types of graphynes
ranging from α-, β-, and 6,6,12-graphyne to 6BN,6,12- and
6(H2),14,18-heteroatom graphynes.7 The existence of Dirac
points and cones indicates that intrinsic carrier mobilities in
these 2D materials could be as high as those of graphene.
Inspired by the new discovery, in this work, we predict intrinsic
carrier mobilities of graphynes based on first-principles band
structure calculations and the Boltzmann transport theory9

under the deformation potential (DP) approximation.10 The
theories and computational scheme have been applied
successfully to predicting intrinsic carrier mobilities of
graphene, which yields comparable mobilities of holes and
electrons as high as 105 cm2 V−1 s−1 at 300 K11 in reasonable
agreement with the experimentally measured values of 2−25 ×
104 cm2 V−1 s−1.12−16 Most strikingly, we showed that the
polarity of the transport, that is, whether it is hole or electron
transport, can be tuned by nanoengineering the width of
graphene ribbons. The theories and first-principles calculations
also predicted that graphdiyne is a semiconductor with electron
mobility comparable to, and hole mobility one order of
magnitude lower than, that of graphene.17 It is then asked
whether there exist materials whose intrinsic carrier mobilities
are higher than those of graphene. Our answer to this question
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is positive, and we find in this work that carrier mobilities in the
6,6,12-graphyne could be even larger than those of graphene.
As shown in Figure 1, the α- and β-graphynes are of

hexagonal symmetry like graphene, whereas the 6,6,12-
graphyne is of rectangular symmetry. These graphynes differ
from each other in the percentage of acetylenic linkage in their
structures. For the α-graphyne, all of the sp2 bonds in graphene
have been replaced by the acetylenic linkages. The percentage
of the acetylenic linkages is 66.67% for the β-graphyne and
41.67% for the 6,6,12-graphyne. Using graphene as the
reference, zigzag and armchair edges are oriented along the a
and b directions, respectively. We performed the first-principles
band structure calculations with the Vienna ab initio package
(VASP)18,19 using the projector augmented wave method and
the Perdew−Burke−Ernzerhof (PBE) functional.20 Optimiza-
tion of the lattice vectors and atomic positions with a 31 × 31 ×
1 Monkhorst−Pack k-mesh21 and an energy cutoff of 600 eV
yields the lattice constants of a = 9.44 Å and b = 6.90 Å for the
6,6,12-graphyne. The a and b directions are defined as oriented
along the zigzag and armchair edges of graphene and graphyne.
The band structures and density of states (DOS) of the α-,

β-, and 6,6,12-graphynes are shown in Figure 2. The 2D
contour plots of the valence band (VB) and conduction band
(CB) energies in the reciprocal space are displayed in Figure 3
to clearly demonstrate the location and shape of the Dirac
cones. There exist two and six Dirac points, respectively, in the

first Brillouin zone of the α- and β-graphyne. The two and six
points are related by symmetry, as can be seen from Figure 3.
For the α-graphyne, the Dirac point is located at the high-
symmetry K-point in the irreducible Brillouin zone, similar to
that of graphene. Consequently, the Dirac cones exhibit a three-
fold symmetry. In the β-graphene, the Dirac point is located on
the line from Γ to M, and the Dirac cones exhibit a reflection
symmetry with respect to the Γ−M direction. Compared to
graphene and the α- and β-graphynes, two pairs of Dirac points
have been observed in the first Brillouin zone of the 6,6,12-
graphyne. The Dirac points of each pair are symmetry-related.
One of the two nonequivalent Dirac points in the irreducible
Brillouin zone is along the direction from Γ to X′ (Dirac cone
I), and the other is located on the line from M to X near the
high-symmetry X-point (Dirac cone II), which is in agreement
with Görling’s results.5 The Dirac cones I and II exhibit a
reflection symmetry with respect to the mirror line from Γ to
X′ and the line from M to X, respectively. Apparently, the slope
of Dirac cone I is much larger than that of Dirac cone II. The
slopes and curvatures of the Dirac cones are significantly
relevant to the intrinsic carrier mobilities.
For a perfect sp−sp2 hybridized 2D graphyne sheet, the

charge carriers are delocalized, and the band theory is
appropriate for description of the charge transport.22,23 When
the carriers are accelerated in the electric field, they are subject
to scatterings by phonons. The Boltzmann transport equation

Figure 1. Schematic representation of (a) graphene, (b) α-graphyne, (c) β-graphyne, and (d) 6,6,12-graphyne lattices. For the α- and β-graphynes,
both the rhombus primitive cell (red dotted lines) and the rectangular supercell (blue solid lines) are labeled. The latter is used for the DP
calculation. For the 6,6,12-graphyne, the primitive cell is rectangular. The a and b directions are oriented along the zigzag and armchair edges of
graphene and graphyne.
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describes the time evolution of the carrier distribution function
and can be solved in the relaxation time approximation. The
relaxation times measure how quickly the carriers can restore
their equilibrium distribution via scatterings with phonons. The
DP theory first proposed by Bardeen and Shockley10 can be
used to describe the electron−acoustic phonon scattering in the
long-wave limit. The theory assumes that the local
deformations produced by the lattice waves are in analogy to
those in the homogeneously deformed lattices. The advantage
of the simplified DP theory is that the electron−phonon
scattering matrix element can be derived first-principlely. We
have successfully applied the DP theory to the calculation of
relaxation times and prediction of carrier mobilities of organic
molecular crystals24,25 and carbon-based electronic materials
such as graphene and graphdiyne sheets and nanoribbons.11,17

The relaxation times of carriers due to the electron−acoustic
phonon scatterings can be expressed as
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where β is the direction of the external field. τ(i,k), ε(i,k) and
v(i,k) denote the relaxation time, the band energy, and the
group velocity at the k-point of the ith band, respectively. E1 is
the DP constant, and C is the 2D elastic constant.
The solution to the Boltzmann transport equation9 gives the

steady-state distribution function of carriers in the external field.
The carrier mobility, defined as the drift velocity of charge
carriers in the unit electric field, is derived. The Boltzmann
transport theory has been proved reliable for carrier transport at
the Dirac point for graphene at a relatively low carrier density.26

In our work, the mobility of holes and electrons is expressed as
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where f 0 is the Fermi−Dirac distribution function expressed as
f 0

e(ε) = (1 + exp[(ε − εF)/kBT])
−1 and vβ(i,k) is the β

Cartesian component of the group velocity defined as vβ(i,k) =
(1/ℏ)·∂ε(i,k)/∂kβ.
According to eq 2, to obtain accurate carrier mobilities, we

need energy grids on a very fine k-mesh. On the basis of the
charge density previously converged on a 31 × 31 × 1 k-mesh,
the electronic energies on a 121 × 85 × 1, 41 × 61 × 1 and 71
× 71 × 1 k-mesh, respectively, were calculated from non-self-
consistent runs for the α-, β-, and 6,6,12-graphyne. The DP
constant E1 characterizes the coupling strength of the charge
carriers with the acoustic phonons. To obtain the DP constant,
we dilate the lattice cell up to 1.5% along the a and b axes and
measure the shift of the energy band edge. The atomic
positions are relaxed upon each dilation. Because the graphyne
band features Dirac points and cones, we follow the Fermi level
change as a function of dilation. The relationship between the
Fermi level position and the dilation Δl/l0 is plotted in Figure
4. The DP constant is defined as E1 = ΔE/(Δl/l0), where ΔE is
the band energy shift. By linearly fitting the data, we obtain the
DP constant E1 for both electrons and holes. With the dilation
scheme, we can also obtain the 2D elastic constant C by
quadratic fitting of the total energy E with respect to the
dilation Δl/l0 as (E − E0)/S0 = (C/2)(Δl/l0)2; see Figure 4. S0
is the cell area in the ab plane, and E0 is the total energy of the
cell without dilation. Combining eqs 1 and 2, we finally obtain
the relaxation times and the intrinsic mobilities of graphynes.
The results are summarized in Tables 1 and 2. The elastic
constants, the DP constants, the relaxation times, and the
mobilities of graphene and graphdiyne obtained in our previous
studies are also provided for comparison.11,17,25

It can be seen from Table 1 that the elastic constant of
graphyne decreases as the percentage of acetylenic linkages
increases. Graphdiyne has a similar atomic geometry as
graphene, but all of the sp2 bonds have been replaced by the
diacetylenic linkages. The percentage of the acetylenic linkage is
50% for graphdiyne, and the elastic constant of graphdiyne lies
in between those of the 6,6,12- and β-graphyne. The
mechanical properties of graphynes have been investigated
using molecular dynamics simulations recently.27 A similar
trend has been observed there, with the fracture stress highest

Figure 2. Band structures and DOS of the (a) α-graphyne, (b) β-
graphyne, and (c) 6,6,12-graphyne. The Fermi level has been shifted to
zero. The Dirac points are located where the CB (red line) bottom
and the VB (blue line) top meet.
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in graphene, followed by the γ-, 6,6,12-, β-, and α-graphyne.
This can be explained as follows. With the increase in the

linkages, the carbon atoms in the structures become sparser,
which leads to fewer bond connections and smaller fracture

Figure 3. Contour plots of VB and CB energies of the (a) α-graphyne, (b) β-graphyne, and (c) 6,6,12-graphyne in the Brillouin zone. The area
surrounded by the black solid lines is the first Brillouin zone. The locations of the Dirac points are highlighted by the red dots.

Figure 4. DP constant and 2D elastic constant evaluation for the (a) α-graphyne, (b) β-graphyne, and (c) 6,6,12-graphyne. (Upper) Fermi level shift
with respect to the lattice dilation Δl/l0. The linear fit of the data gives the DP constant. (Lower) Total energy with respect to the lattice dilation Δl/
l0. The quadratic fit of the data gives the 2D elastic constant.
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stresses. Opposite to the fracture stress, the fracture strain
increases with increasing the acetylenic linkages because the
presence of the linkages makes graphynes less rigid. Therefore,
the Young’s modulus decreases with increasing acetylenic
linkages. It is further noted from Table 1 that the 6,6,12-
graphyne displays a strong anisotropy in the elastic constant.
For the other graphynes and graphene, their elastic constants in
the a and b directions are rather close, exhibiting little
anisotropy. The reason is that all of the graphynes and
graphene have hexagonal symmetry except for the 6,6,12-
graphyne.
Similar to the elastic constant, the DP constant also decreases

with increasing the acetylenic linkages. Graphene possesses the
largest DP constant, followed by the 6,6,12-, β-, and α-
graphyne. This can be attributed to the fact that the sp triple
bonds are stronger than the sp2 double bonds; therefore, the
energies of graphynes are not prone to change upon lattice
deformations. The DP constants of the three different
graphynes investigated here are found to be close to each
other. Graphdiyne is a semiconductor, and its DP constants for
electrons and holes are different. The DP constant of
graphdiyne for electrons is even smaller than that of graphynes
due to the stronger diacetylenic linkages in graphdiyne. It is
also observed from Table 1 that the DP constant in the
armchair (b) direction is always larger than that in the zigzag
(a) direction. This can be explained by the orientation of sp
and sp2 bonds in the structures of graphene, graphynes, and
graphdiyne. As shown in Figure 1, there are bonds oriented
along the armchair (b) direction, but no bonds are parallel to
the zigzag (a) direction. When the lattice deformation is

applied in the b direction, the bonds are directly dilated, which
can cause a large band energy shift. In contrast, when the
deformation is applied in the a direction, the dilation is not in
the bond direction, and its influence on the bond length and
the corresponding band energy is not as strong as that in the b
direction. Therefore, the anisotropy in the DP constant can be
attributed to the difference in the bond orientation in the
structures. Among the three different graphynes, graphene, and
graphdiyne, the 6,6,12-graphyne displays the strongest
anisotropy, which is a result of its rectangular symmetry.
The elastic constant and the DP constant together can

determine the electron−phonon coupling strength. According
to eq 1, the relaxation time is proportional to the elastic
constant but inversely proportional to the square of the DP
constant. It has been mentioned above that the DP constants of
the 6,6,12-, β-, and α-graphyne are rather close; therefore, the
relaxation times of the three graphynes are determined mainly
by their elastic constants. It can be seen from Table 2 that the
relaxation time decreases as the percentage of acetylenic
linkages increases from 41.67% for the 6,6,12-graphyne to
100% for the α-graphyne. The largest relaxation time for the
6,6,12-graphyne eventually leads to the highest carrier mobility.
It is noted that the relaxation time for electrons in graphdiyne is
even larger than that in the 6,6,12-graphyne because graphdiyne
has a moderate elastic constant and a much smaller DP
constant for electrons, but graphdiyne does not feature the
Dirac cones and linear dispersions; as a result, it exhibits a high
electron mobility but not as high as that for the 6,6,12-
graphyne.
Finally, it comes to the question raised at the beginning of

the Letter, are there any materials whose intrinsic carrier
mobilities are higher than those of graphene? Compared to
graphene, the 6,6,12-graphyne has a smaller elastic constant and
a much smaller DP constant in the zigzag (a) direction, which
leads to electron−phonon couplings in the 6,6,12-graphyne
that are weaker than those in graphene. As a result, the
relaxation time for electrons in the 6,6,12-graphyne along the a
direction is larger than that in graphene. According to eq 2, the
intrinsic carrier mobilities rely on not only the relaxation times
but also on the group velocities and the shapes of the Fermi
surfaces. The 6,6,12-graphyne features two nonequivalent Dirac
cones, and the carriers in it behave like the Dirac fermions
traveling at a speed of light, as in graphene. We find that the
carrier mobilities of the 6,6,12-graphyne in the a direction are
even higher than those of graphene for both electrons and
holes. Due to the rectangular symmetry of the 6,6,12-graphyne
lattice, its Dirac cones and electron−phonon couplings are

Table 1. Elastic Constants C and DP Constants E1 for the α-,
β-, and 6,6,12-Graphyne, As Well As Graphene and
Graphdiyne

carbon
allotropes

acetylenic linkage
(%) axis

C
(J m−2) E1 (eV)

α-graphyne 100 a 94.30 2.94
b 95.19 2.97

β-graphyne 66.67 a 131.41 2.99
b 130.65 3.11

6,6,12-
graphyne

41.67 a 199.37 3.07

b 150.52 3.56
graphene 0 a 328.02 5.14

b 328.30 5.00
graphdiyne 50 a 158.57 6.30 (h)/2.09 (e)

b 144.90 6.11 (h)/2.19 (e)

Table 2. Relaxation Times τ and Intrinsic Mobilities μ of Holes and Electrons at 300 K for the α-, β-, and 6,6,12-Graphyne, As
Well As Graphene and Graphdiyne

carbon allotropes axis τh (ps) τe (ps) μh (104 cm2 V−1 s−1) μe (104 cm2 V−1 s−1)

α-graphyne a 2.84 2.83 3.316 3.327
b 2.80 2.79 2.960 2.716

β-graphyne a 5.82 6.40 1.076 0.892
b 5.37 5.91 0.856 0.798

6,6,12-graphyne a 12.31 17.75 42.92 54.10
b 6.93 9.99 12.29 24.48

graphene a 13.80 13.94 32.17 33.89
b 13.09 13.22 35.12 32.02

graphdiyne a 1.94 19.11 1.97 20.81
b 1.88 15.87 1.91 17.22
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highly anisotropic, which leads to the anisotropic carrier
transport in the 6,6,12-graphyne. In contrast, the carrier
transport in graphene is almost isotropic. The directional-
dependent carrier transport is anticipated to make the 6,6,12-
graphyne more versatile than graphene in potential applica-
tions.
To conclude, we employ the Boltzmann transport theory

coupled with the DP theory to predict at the first-principles
level the intrinsic carrier mobilities for the α-, β-, and 6,6,12-
graphynes. Our theoretical results suggest that the 6,6,12-
graphyne exhibits a carrier mobility larger than that of graphene
in one direction for both electrons and holes. The intrinsic
carrier mobility of 6,6,12-graphyne at room temperature can
reach 5.41 × 105 and 4.29 × 105 cm2 V−1 s−1 for electrons and
holes, respectively. The high carrier mobility of 6,6,12-graphyne
is a result of weaker electron−phonon coupling strength and
longer relaxation times. The rectangular symmetry of the
6,6,12-graphyne lattice is responsible for the anisotropic
transport in it. The anisotropic transport that is not found in
graphene could be exploited in nanoscale electronic devices. In
addition, a strong correlation between the percentage of
acetylenic linkages and the elastic constant, the DP constant,
and, thereby, the electron−phonon coupling strength, has been
revealed for these 2D carbon allotropes. It is found that the
hybridization of sp−sp2 carbon is capable of improving the
planar transport behaviors of the carbon allotropes. Focusing
on the features of Dirac cones, band structure engineering can
provide a clue for tuning the electronic transport in 2D carbon-
based materials.
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