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ABSTRACT: Based on the second-order perturbation
combining spin−orbit and nonadiabatic couplings, we derived
an analytical formula for nonradiative decay rate between the
triplet and singlet states by using the thermal vibration
correlation function (TVCF) approach. Origin displacement,
distortion, and Duschinsky rotation of the potential energy
surfaces are taken into accounts within the multiple harmonic
oscillator model. When coupled with first-principles calcu-
lation for the anthracene, the theoretical phosphorescence
spectrum is in good agreement with the experiment.
Furthermore, we found that the intersystem crossing from
the first excited singlet state (S1) to the triplet states S1(Bu)→T2(Ag) is forbidden by direct spin−orbit coupling at the first-order
perturbation but becomes allowed through combined spin−orbit and the nonadiabatic couplings at the second-order
perturbation, and the rate is calculated to be 0.26 × 108 s−1, in good agreement with the experiment. Such formalism is also
applied to describe the phosphorescence quantum efficiency and the temperature dependent optical emission spectrum for fac-
tris(2-phenylpyridine) iridium. We predict that the radiative decay rate is 6.36 × 105 s−1, the nonradiative decay rate is 5.04 × 104

s−1, and the phosphorescence quantum efficiency is found to be 92.7% from T1 to S0, which reproduce well the corresponding
experimental measurements.

I. INTRODUCTION

White organic light-emitting diodes (WOLEDs) are considered
as the promising candidates for solid state lighting applica-
tion.1−4 In WOLEDs, light emission proceeds via a
recombination of injected electrons and holes to form both
singlet and triplet excitons. In the conventional fluorescent
emitter (singlet emitter), the triplet excitons are transferred
into heat and hence are not used for the generation of light. For
the phosphorescent emitter, the radiative path from the excited
triplet state to the singlet ground state can be opened by the
spin−orbit coupling (SOC) interaction induced by the
transition metal. SOC is also able to induce an efficient transfer
from the excited singlet to the light emitting triplet state. Thus,
almost all the excitation energies are accumulated in the lowest
excited triplet state, and inherently, the quantum efficiency may
attain 100%. As a result, the WOLEDs that contain organic
transition metal complexes exhibit much higher efficiency and
meet the energy saving requirements. Therefore, in the
WOLEDs field, a vast amount of attention has started to
focus on how to design and synthesize novel highly efficient
phosphorescent emitters.

Over the past decade, considerable progress in the
phosphorescent emission materials has been made. In
particular, a large number of iridium-based phosphors have
been developed and applied in WOLEDs.4,5 So far, the
emission colors of the phosphorescent emitters can be
systematically controlled and tuned from the near-UV to the
near-infrared spectral range by modifying the organic ligands.
However, compared to green emission molecules, the
compounds that show red or blue emissions always exhibit
relatively lower emission efficiencies.6 Luminescence from
molecular materials is dictated by the excited-state dynamics,
namely, by the competition between radiative and the
nonradiative decay processes. Molecules for WOLED applica-
tion are usually quite large with >50 atoms, and the
phosphorescent radiative decay time is typically around
microseconds. It is impossible to run any nonadiabatic quantum
dynamic simulation for the nonradiative decay process for a
time scale comparable with the radiative decay time (∼micro-
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seconds to milliseconds for phosphorescence). Here, we
present a statistical rate analytical formalism based on second-
order perturbation theory combining both spin−orbit and
nonadiabatic couplings. In fact, in some cases, direct spin−orbit
coupling matrix element between the singlet and triplet states
could vanish by symmetry. In this case, we have to take into
account the spin−vibronic coupling through second-order
perturbation or the vibronic spin−orbit coupling through the
first-order perturbation.7,8 Basically, the former means the
spin−orbit and nonadiabatic vibronic interactions, which must
be included since the states of the same multiplicity always exist
among the intermediate states in the second-order perturbation
theory; the latter is the first-order derivative of the spin−orbit
coupling with respect to the normal mode coordinate, which
closely resembles the conventional Herzberg−Teller term of
the electrical dipole transition matrix elements.8 Marian et al.
discussed the fast intersystem crossing rate driven by the first-
order vibronic spin−orbit coupling for organic compounds.9−11

To the best of our knowledge, there is no work on intersystem
crossing rate through the combined spin−orbit and the
nonadiabatic couplings at second-order perturbation.
In this work, based on the second perturbation theory, we

derive a general intersystem crossing rate formalism including
the spin-vibronic coupling by considering origin displacements,
distortions, and Duschinsky rotation within a multimode
harmonic oscillator model. We employ the thermal vibration
correlation function (TVCF) method, which has been
successfully applied to absorption and emission spectra,
radiative decay rate, and the internal conversion rate from the
excited singlet state to ground state by considering the
Duschinsky rotation effect and the Herzberg−Teller effect.12−14
We have also rationalized the exotic aggregation induced

emission phenomena in the novel light-emitting materials,15−17

and the computational results have been used in designing
novel light-emitting molecules with aggregation induced
emission property.18−20

II. THEORETICAL FORMALISM
A. Intersystem Crossing Rate Constant. General

Formalism. Based on the time-dependent second-order
perturbation theory and the Born−Oppenheimer adiabatic
approximation, the thermal average rate constant from the
initial electronic state i with the vibrational quantum numbers v
to the final electronic state f with the vibrational quantum
numbers u reads:21
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Here, Piv is the Boltzmann distribution function for the initial
vibronic manifold; H′ denotes the interaction between two
different Born−Oppenheimer states; and the delta function δ is
to keep the conservation of energy.
For the radiationless transitions, the interaction Hamilto-
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ĤSO denotes the spin−orbit coupling, k is the index of normal
mode; r and Q are the electronic and normal mode coordinates,
respectively. P̂fk is the normal momentum of the kth normal
mode in the final electronic state.
Expanding eq 1, we obtain
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For the first-order contribution kf←i
(0) , due to the spin symmetry

requirement, the ĤBO term in eq 2 does not make any
contribution between singlet and triplet states. So, we have
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Applying the Condon approximation, eq 8 can be further
deduced to

∑π δ=
ℏ

|⟨Θ |Θ ⟩| −β
←

− −k R Z E E
2

e ( )
v u

E
u v v uf i

(0)
fi
isc

i
1

,
f i

2
i f

v
i

(9)

Here, Zi
−1 = ∑v={01,02,...,0N}

∞ e−βEv
i

is the partition function, and β =

1/(kBT). N is the number of normal modes.
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is the spin−orbit coupling between the initial and final
electronic states. Equation 9 is the simplest and the most
commonly employed intersystem crossing rate formalism.
For the second term kf←i

(1) , we must simultaneously consider
the contributions from terms ĤBO and ĤSO, and their cross
product term. Substituting eqs 2 and 3 into eq 6 and using the
Condon approximation, neglecting the second-order of the
Hin

SOHnf
SO term, we obtain

′ = ⟨Θ |Θ ⟩H Hu v u vf ,i fi
SO

f i (11)
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Further applying Plazcek approximation, Eiv − Enw ≈ Ei − En, eq
12 can be recast into
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Merging eq 11 and eq 13, we have

∑ ∑π δ=
ℏ

−β
←

− −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥k R Z P E ERe

2
2 e ( )

k
k v

v u

E
u v k v uf i

(1)
fi,
isc

i
1

,
f ,i ,
(1)

i f
v
i

(15)

Here

≡R H Tk kfi,
isc

fi
SO

if, (16)

and

≡ ⟨Θ | ̂ |Θ ⟩⟨Θ |Θ ⟩P Pu v k v k u u vf ,i ,
(1)

i f f f i (17)

Similarly, the third term can be recast as the following:
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Vibration Correlation Functions. Under the harmonic
oscillator model, the vibronic manifolds consist of a collection
of harmonic oscillators,
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and the one-dimensional harmonic oscillator Hamiltonians are
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The delta function can be Fourier transformed as
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Substituting eqs 21−25 into the eq 9, eq 15, and eq 18, the
following vibration correlation functions can be obtained:
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In eqs 27−29, the thermal vibration correlation functions are
defined as
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where

τ τ≡f (34)

τ τ β≡ − − ii (35)

Analytical Solutions. The solutions of the ρfi
(0)(t) and ρfi,kl

(2)(t)
have been given in ref 14 and ref 13, so here we only introduce
the solution procedure for the ρfi,k

(1)(t).
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First, under the coordinate representation, by continuously
inserting complete set, the vibration correlation function
becomes
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where x, y, z... denote the final state manifold coordinate and x′,
y′, z′, ..., represent the initial state manifold, and ai/f,k(τi/f) =
ωi/f,k/sin(ℏωi/f,kτi/f), bi/f,k(τi/f) = ωi/f,k/tan(ℏωi/f,kτi/f). ai/f and
bi/f are diagonal matrices with diagonal elements ai/f,k(τ) and
bi/f,k(τ), respectively. To solve correlation function eq 36, the
Duschinsky rotation relationship between initial state and final
state should be used,13,14
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where Slk is the matrix element of duschinsky rotation matrix S,
and Dl is the component of displacement D between the
equilibrium geometries of initial and final electronic states.
Applying multidimensional Gaussian integrations and their

derivatives, the final solution of the vibration correlation
function is obtained,
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Insert eqs 39−46 into eq 36; then, the correlation function
ρfi,k
(1)(t) can be obtained. The correlation functions ρfi
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[STaiS]l→k is the lth row of matrix [STaiS], which is multiplied
by −bfk and inserted into the kth row of Gkl,11. The remaining
rows of Gkl,11 are null. [D

TES]l→k is the lth element of the row
matrix [DTES], which is multiplied by bfk and inserted into the
kth row of Hkl,1. The remaining elements of Hkl,1 are null.
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Nonadiabatic Electronic Coupling. Based on the first-order
perturbation theory, the nonadiabatic electronic coupling can
be written as

Φ |
∂Φ
∂

≈
⟨Φ Φ

Φ − Φ
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Q E E( ) ( )k
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Using the following relations,

=
∂

∂σ
σL

q

Qj k
j

k
f ,

f (58)

=σ σ σq M Rj j (59)

where σ is the index of nuclei and j = x,y,z. Lfσj,k is the
transformation matrix element of normal mode in the final
electronic state. Rσj is the Cartesian coordinate of the σth atom
along j direction. The coupling can be recast as
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where τf←i,σj is defined as
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The nonadiabatic electronic coupling τf←i,σj can be calculated at
the level of CASSCF in the MOLPRO program.22

B. Phosphorescence Spectrum and Radiative Decay
Rate. Generally, the spontaneous emission spectrum is
expressed as

∑σ ω ω μ

δ ω
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Here, c is the velocity of light in vacuum. μfi = ⟨Φf|μ̂|Φi⟩ is the
electric transition dipole moment.
The optical transition between singlet and triplet states is

forbidden. If the spin−orbit coupling is considered, the pure
singlet or triplet becomes mixed state. Using the first-order
perturbation theory, the mixed singlet and triplet electronic
states read
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and
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respectively. Then, the electric dipole transition between the
singlet and triplet electronic states becomes allowed and can be
expressed as

∑ ∑
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Here, n, k are the intermediate triplet and singlet electronic
states, respectively; m is the magnetic quantum number (m =
{−1, 0, 1}). The total transition electric dipole moment is the
average of three components:

∑μ μ| | = | |← ←
1
3S T

m
S T

2 2
m (66)

Adapting the vibration correlation function method, the
phosphorescence spectrum formulizm can be obtained from
the relevant result above-mentioned,
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The spontaneous radiative decay rate is the integration of eq
67:

∫ σ ω ω=
∞

k ( ) dr
0

em (69)

So far, combining with our previous results,12,13 we have
obtained a unified time-integration formalism for the
fluorescence and phosphorescence spectra and the correspond-
ing radiative decay rates, the internal conversion rate, and the
intersystem crossing rate by using the thermal vibration
correlation function method. The advantages lie in that (i)
Duschinsky rotation mixing all the normal modes as well as the
Herzberg−Teller effect are incorporated analytically; (ii) the
expressions are mathematically compact and ready to deal with
the operations between several simple matrices and determi-
nants; (iii) the numerical calculations are highly efficient with
the help of fast Fourier transformation technique. All the
vibrational modes and all the vibrational quanta for each mode
are automatically included. The scale of computation is only
approximately N3 (N is the number of normal modes), namely,
matrix operation. While the computational costs in the brute-
force sum-overstate implementation is up to (a + 1)N, where a
is a required cutoff of vibrational quanta.23 Thus, the method
provides a facile framework for application in large molecules.
The disadvantage or difficulty is that the time integration might
not be convergent when the excited state reorganization energy
is too small. This happens for the rigid and planar molecules. In
this case, we introduce a (small) Lorentzian or Gaussian
dephasing factor (about a few cm−1) to guarantee the numerical
convergence. We will demonstrate the principle through two
application examples, pure organic compound anthracene and
an organo-metal iridium compound.

III. COMPUTATIONAL DETAIL
For anthracene, DFT is used to optimize the geometries and
calculate the frequencies and normal modes for the ground
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state (S0) and the first excited triplet state (T1), and TDDFT is
applied for the first excited singlet state (S1). The range-
separated hybrid functional CAM-B3LYP and PVTZ basis set
are adopted. Based on the optimized configuration of S1 state,
the high excitation energies are evaluated using TDDFT/
B3LYP, TDDFT/CAM-B3LYP, TDDFT/M06-2X, and
CASSCF methods, respectively. Then, the spin−orbit coupling
matrix elements and the nonadiabatic electronic coupling
matrix elements are calculated at the level of CASSCF. All the
DFT and TDDFT calculations are carried out in the Gaussian
09 program package24 and CASSCF calculations are preformed
in MOLPRO program package.22

For fac-tris(2-phenylpyridine) iridium, the geometry opti-
mization and frequencies calculations are performed at S0 and
T1 states at the level of DFT with CAM-B3LYP functional and
PVTZ basis sets for C, N, H atoms and Lanl2DZ for iridium
atom, which are also carried out in Gaussian 09. The transition
dipole moments from the T1 to S0 are evaluated from the
quadratic response function.25 And the corresponding spin−
orbit coupling matrix elements are computed by using the
effective single-electron approximation26,27 in linear response
theory, which has been confirmed to be a good standoff
between the accuracy and computational cost28 and extensively
applied.29−32 These are carried out using PVTZ basis set for C,
N, H atoms and Stuttgart/Dresden ECP basis set (SDD) for
iridium atom in Dalton program.33

Finally, for all the investigated compounds, the correlation
function of phosphorescent spectra and the radiative and the
intersystem crossing rate constants are calculated using our
home-built programs.

IV. RESULTS AND DISCUSSION
A. Phosphorescence Spectrum and Intersystem

Crossing Rates of S1−Tm for Anthracene. Anthracene has
long been focus of both theoretical and experimental researches
and a wealth of experimental and theoretical spectroscopic data
are available to compare with. Therefore, it is chosen as the
benchmark to validate the formalism developed in this work.
First, the geometries of anthracene are optimized in the S1, T1,
and S0 states. In the optimizations, the DFT is adopted for S0
and T1, and the TDDFT is used for S1. Subsequently, based on
the vibration frequencies and normal modes computed at the
optimized geometries, the normalized phosphorescent spectra
are obtained at temperature T = 77 K by applying the thermal
vibration correlation function formalism described in Section II,
and depicted in Figure 1 in comparison with the available
experimental data.
CAM-B3LYP functional presents an adiabatic transition

energy 1.89 eV from T1 to S0, close to the CCSD(T) value of
2.00 eV.34 The calculated maxima of the phosphorescence
spectra at 77 K are 14307 cm−1 (1.77 eV), where a shift of 0.08
eV to the red when compared with experiment for which the
peak is at 14926 cm−1 (1.85 eV).35 A Gaussian broadening
factor of 10 cm−1 is added to eliminate the sharp oscillation in
the spectrum. From Figure 1, it is obvious that the calculated
spectrum well reproduces the experimental observation. From
our previous work,13 it was noted that Herzberg−Teller effect
for anthracene is negligible. In addition, the theoretical
absorption and fluorescent spectra were found to be in good
agreement with the experiment.13 These indicate that DFT
theory is appropriate to predict the equilibrium geometries,
vibration frequencies and normal modes for the linear
polycyclic aromatic hydrocarbons (PAHs) either in S0, S1, or

T1. On the other hand, our thermal vibration correlation
function method works well for the PAHs.
Starting from the optimized S1 geometry, we calculate a few

low-lying excited singlet and triplet states at CASSCF and
TDDFT levels (Table 1) to be used as the intermediate states

in eqs 6 and 7. We note that the Ag/Bu orderings of the low-
lying singlet and triplet states are the same in different methods.
TDDFT/B3LYP always underestimates the excitation energy as
expected. The vertical excitation energy (0.81 eV) for the T1→
S0 transition got by TDDFT/CAM-B3LYP is too low, which
indicates that the TDDFT/CAM-B3LYP is not appropriate to
predict the excited triplet state. Such discrepancy has already
been pointed out in literature,36,37 because the triplet excitation
energy is particularly sensitive to the range-separation
parameter. Nevertheless, TDDFT/M06-2X is very close to
CASSCF. Therefore, TDDFT/M06-2X could be a good choose
for the relatively large luminescence systems in future
application. Here, since we need SOC and nonadiabatic
electronic coupling elements among various excited states,
which are not yet implemented in any TDDFT code. We thus
stick on CASSCF calculations. We choose 9 π orbitals with 10
electrons as the active space and the state-average scheme is

Figure 1. Calculated phosphorescent spectra with a Gaussian
broadening factor 10 cm−1 in comparison with the experimental
counterpart measured in rigid glass solution for anthracene at 77 K in
ref 35.

Table 1. Vertical Electronic Excitation Energies (in eV) at
the Levels of CASSCF and TDDDFT Obtained at the
Optimized S1 Geometry for Anthracene (Corresponding
Symmetries Are Given in Parentheses)

TDDFT

states CASSCF B3LYP CAM-B3LYP M06-2X

S1 4.02 (Bu) 2.79 (Bu) 3.06 (Bu) 3.09 (Bu)
S2 4.45 (Bu) 3.70 (Bu) 3.85 (Bu) 3.88 (Bu)
S3 4.66 (Ag) 4.14 (Ag) 4.83 (Ag) 4.87(Ag)
S4 4.88 (Ag) 4.55 (Ag) 4.93 (Ag) 4.92 (Ag)
S5 5.73 (Bu) 4.97 (Bu) 5.25 (Bu) 5.23 (Bu)
T1 1.68 (Bu) 1.27 (Bu) 0.81 (Bu) 1.60 (Bu)
T2 3.45 (Ag) 2.94 (Ag) 2.82 (Ag) 3.32 (Ag)
T3 4.20 (Bu) 3.37 (Bu) 3.52 (Bu) 3.64 (Bu)
T4 4.26 (Bu) 3.53 (Bu) 3.62 (Bu) 3.70 (Bu)
T5 5.44 (Bu) 3.81 (Bu) 3.75 (Bu) 4.23 (Bu)
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considered. The SOC matrix elements are evaluated at the
CASSCF level in MOLPRO program package.
From the CASSCF data (Table 1), we see that T1 and T2

states are below S1, while T3 is above.
38 So, we now look at the

intersystem crossing rate of the transitions S1→T1 and S1→T2.
First, the spin−orbit coupling for singlet and triplet states

and the nonadiabatic electronic coupling within the same spin-
manifold are calculated at the S1 state geometry at the CASSCF
level, given in Table 2 and Figure 2, respectively. The spin−

orbit matrix elements are computed with Breit−Pauli spin−
orbit Hamiltonian.39,40 From Table 2, it can be seen that all the
values are <1.0 cm−1, which are typical for π−π* transition in
planar organic molecule. Figure 2 shows the nonadiabatic
electronic coupling matrix elements for different normal modes.
The nonadiabatic electronic coupling matrix elements range
from tens to thousands cm−1.
For symmetry reasons, the direct spin−orbit coupling

between S1 (Bu) and T2 (Ag) vanishes and the corresponding
ISC is forbidden. Hence, one needs to consider the
intermediate states coupled through nonadiabatic interaction
to give rise indirect spin−orbit coupling, which drives the
intersystem crossing from S1 to different triplet states. Then, by
checking the energy levels of the triplet and singlet states, S2, S3,
S4, T1, T3, and T4 states are chosen as the intermediate states in
eqs 28 and 29. Subsequently, based on all the electronic
structure, using the thermal vibration correlation function
under the second-order perturbation theory eq 4, the
intersystem crossing rate of S1→T2 is computed. For the
intersystem crossing S1→T1, we also consider the second-order
perturbation contribution. Here, S2, S3, S4, T2, T3, and T4 states
are chosen as the intermediate states.
We first look at the first-order term kf←i

(0) in eq 27 for S1→T1
transition rate. Since anthracene is planar and rigid, the vibronic
coupling is weak, presenting very small Huang−Rhys factor
(Figure 3a). The integrand for the time integration is of
oscillating feature. Further, the Duschinsky mode mixing effect
is also very weak (Figure 3b). To guarantee the numerical
convergence, we add a Gaussian factor to simulate the
inhomogeneous broadening at room temperature. Here, the
different broadening values 100, 50, 20, 10, and 5 cm−1 have
been tested. The time integration interval is set to be [−10, 10]
ps with an increment step of 0.001 fs. It should be noted that

the calculated rate does not depend on the broadening values.
The resulting rates are 0.642 × 102 s−1, 0.642 × 102 s−1, 0.643 ×
102 s−1, 0.643 × 102 s−1, and 0.643 × 102 s−1, respectively, for
the above chosen broadenings, which indicate that the time
integration is independent of broadening factor. We present all
the calculated intersystem crossing rates in Table 3. The decay
rate S1→T2 (0.26 × 108 s−1) is found to be much faster than
S1→T1 (0.20 × 103 s−1), in good agreement with the previous
theoretical result41 as well as the experimental observation in
the textbook.42 Here, it is worth mentioning that the
intersystem crossing rate 0.26 × 108 s−1 of the S1→T2 is very
close to that obtained from vibronically induced spin−orbit
coupling.41

B. T1 → S0 Transition in fac-tris(2-phenylpyridine)
Iridium. Iridium-based complexes have attracted a great
interest due to their applications in WOLEDs. In particular,
fac-Ir(ppy)3 (ppy = 2-phenyl pyridine anion) (seen in Figure 4)
is the most commonly used green emitter. The photophysical
properties have been extensively studied both experimen-
tally4,45−49 and theoretically.30,50,51 The high resolution
experimental spectra data, radiative and nonradiative transition
rates at cryogenic and ambient temperatures, are available. It is
our primary interest to compute both the emission spectrum at
different temperature as well as the phosphorescence efficiency
to compare with the experiment.
The line shape of a spectrum is a key factor to understand

the photophysical properties. So, we first compare the
calculated spectra with the experiment at different temperatures
T = 77 K, 198 K, and 298 K, shown in Figure 5a. Usually, the
emission from an electronic state takes place as purely
electronic transition, for example, from a substate of T1 to S0
with involvement of vibrational modes. At low temperature, the
transitions occur at the low-energy side of the purely electronic
transition. The fine structures, caused by some active vibration
modes in the radiative processes, can be well resolved. With
increasing temperature, the population of three purely
electronic substates of T1 and that of molecular vibrations
increase, which smear out the vibrational satellites and result in
broad vibrational side bands. Experimental observation
indicates that all resolved features, which stem from three
different substates, disappear above about T = 25 K.52 On the
other hand, the width of an emission spectrum generally is
determined by the vibronic coupling, which is induced by
Franck−Condon factor, not by the electronic substates. Hence,
the temperature effect is included in the Boltzmann distribution
function of vibrations, and there is no additional broadening
factor in the calculation.
From Figure5a, several interesting characteristics can be

found for increasing temperature: (i) the vibrational satellites
are smeared out, resulting in broad vibrational side bands; (ii)
there is a remarkable red shift of the emission dominant peak;
(iii) the intensity of emission peak reduces. The calculated
maxima are 466, 506, and 509 nm at 77 K, 196 K, and 298 K,
respectively, which well reproduces the experimental observa-
tions.49 It indicates that CAM-B3LYP functional is appropriate
to describe the electronic structure properties of fac-Ir(ppy)3
for both S0 and T1. At the same time, our thermal vibration
correlation function formalism is found to be suitable to
describe the photophysical properties of the organo-transition
metal complexes.
Huang−Rhys factor is a useful measure for the extent of

geometry relaxation between two electronic states. For T1 to S0
transition, the calculated Huang−Rhys factors are shown in

Table 2. Calculated SOC Matrix Elements between Excited
States at the Optimized S1 Geometry using CASSCF Method

SOC matrix elements /i cm−1

⟨S0|Ĥ
SO|T1,z⟩ 0.0000

⟨S0|Ĥ
SO|T2,z⟩ 0.0251

⟨S1|Ĥ
SO|T1,z⟩ −0.0280

⟨S2|Ĥ
SO|T1,z⟩ −0.0388

⟨S3|Ĥ
SO|T1,z⟩ 0.0000

⟨S4|Ĥ
SO|T1,z⟩ 0.0000

⟨S1|Ĥ
SO|T2,z⟩ 0.0000

⟨S3|Ĥ
SO|T2,z⟩ 0.0150

⟨S4|Ĥ
SO|T2,z⟩ 0.0000

⟨S1|Ĥ
SO|T3,z⟩ −0.1620

⟨S2|Ĥ
SO|T3,z⟩ 0.0738

⟨S1|Ĥ
SO|T4,z⟩ −0.0004

⟨S2|Ĥ
SO|T4,z⟩ 0.0032

⟨S1|Ĥ
SO|T5,z⟩ 0.0447

⟨S2|Ĥ
SO|T5,z⟩ 2.66 × 10−6
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Figure 5b. The modes with large Huang−Rhys factor
contribute more to the geometry relaxation.
Subsequently, we calculate the radiative and the nonradiative

decay rates from T1 to S0 of fac-Ir(ppy)3 in order to gain some
insights into the light-emitting efficiency in addition to the

emission spectrum. At room temperature, the spin sublevel
population is equalized by spin−lattice relaxation before the
excited-state decay process emission occurs. So, the excited-
state decay rate constant can be simplified as average over the
three substates.

Figure 2. Selected nonadiabatic electronic coupling matrix elements between two electronic states at the optimized S1 geometry configuration at
CASSCF level.

Figure 3. (a) Huang−Rhys factors in terms of S1 surface; (b) contour map of Duschinsky rotation matrix elements (absolute value) between the S1
and T1 normal modes. The scale is shown at the right-hand side with interval of 0.125.
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The radiative rate is calculated by integrating over the
emission spectrum in the whole region. The result is 6.36 × 105

s−1, which is in good agreement with the experiment values of
5.6 × 105 s−1 obtained for Ir(ppy)3 in CH2Cl2

52 and 6.1 × 105

s−1 in 2-MeTHF.49 It is also close to the previous theoretical
value 4.8 × 105 s−1,53 by only considering electronic transition
through Einstein spontaneous emission formula without any
involvement of vibronic couplings. The spin−orbit coupling
matrix element for organo-metallic compound is much larger
than that in pure organic fluorescent molecules. For instance,
⟨S0|Ĥ

SO|T1⟩ matrix elements are 0.66, 0.91, and 133.61 cm−1 for
the three substates. Thus, in the perturbation theory eq 1, the
first term is much larger than the second one. That is, in this
case, it is reasonable to calculate the ISC rate by using the first-

order perturbation formula for fac-Ir(ppy)3. The result is 5.04 ×
104 s−1, in line with the experimental one 3.0 × 104 s−1.52

Subsequently, the corresponding calculated phosphorescent
quantum yield is 92.7%, which lies in the experimental
measured range 90−96% in different solutions at room
temperature. We conclude that the present computational
approach can give reasonable descriptions both for the
phosphorescence emission spectrum and for the quantum
efficiency.
To further elucidate the structure−property relationship in

organo transition metal complex Ir(ppy)3, we take a look at the
molecular geometry relaxation in the decay process of T1→S0.
The main internal coordinates at S0 and T1, as well as the
differences, are given in Table S1 of the Supporting
Information. It can be seen that at the S0, the geometry
symmetry is close to C3 point group. Upon excitation to T1,
one ligand (L1) is pulled closer to the central Ir atom,
corresponding to the decrease of Ir1−C2 and Ir1−N55 bond
lengths, while the other ligands (L2 and L3) is pushed away,
resulting in the symmetry breaking. Besides, the largest
geometry relaxation occurs in L1, such as the Ir1−C2 bond,
C5−C56 bond linking the phenyl and pyridine and some C−C
bonds linked to C2 and N56 in L1, and so on. All the
Reorganization energy characterizes the geometry relaxation. It
is a sum of product of normal mode energy with the
corresponding Huang−Rhys factor. Reorganization energy is
a direct measure for the extent of vibronic coupling between
two electronic states, which determines the width of the optical
spectrum. It also indicates the nonradiative channel for the
excited-state decay. Figure 6 represents normal modes
contributions to the reorganization energies (detailed data
seen in Supporting Information Table S2). It can be seen that
the normal modes with large reorganization energies mainly
appear in the high frequency region (>500 cm−1). Moreover,
these normal modes are mostly localized in ligand L1 rather
than L2 and L3. For the sake of clarity, we depict the
displacement vectors for the normal modes with the largest
reorganization energies (inset of Figure 6). These normal
modes mainly come from the CC stretching vibrations in
phenyl ring and pyridine ring, the deformation of phenyl ring,
and the Ir−C stretching vibration.
We further decompose the organization energy into the

internal coordinate relaxation given in Supporting Information

Table 3. Intersystem Crossing Rate (The First Term kf←i
(0) , the

Second Term kf←i
(1) and the Third Term kf←i

(2) in eq 4) from the
S1 to the T1 and T2 States As Well As the Available
Experimental Value (Unit: s−1)

S1→T1 S1→T2 expt

k(0) 0.64 × 102 0.00
k(1) 0.00 0.00
k(2) 0.14 × 103 0.26 × 108

total 0.20 × 103 0.26 × 108 0.37−0.64 × 108 a

1.51 × 108 b, ∼0.5 × 108 c

aRef 43. bThe value was measured at 293 K with the error limit ±15%
in ref 44. cRef 42.

Figure 4. Molecular structure of fac-Ir(ppy)3 with labeling.

Figure 5. (a) Comparison of the calculated phosphorescent spectra with the experiment (the inset) for fac-Ir(ppy)3 at 77 K, 196 K, and 298 K. (b)
Calculated Huang−Rhys factors versus the normal modes between the S0 and T1 in term of the T1 potential energy surface.
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Table S2, and the large reorganization energies and the
corresponding coordinate relaxations are shown Figure 7.

Combining with the displacement vectors in Figure 6, it is seen
that the largest reorganization energy (612 cm−1) comes from
the C5−C56 bond stretching mode (1564 cm−1), whose bond
length modification is −0.69 Å from T1 to S0. Similarly, the
other structure−property relationships between coordinates,
the vibration normal modes and reorganization energies are
well established.

V. CONCULSION
In this study, we have presented the vibration correlation
function formalisms for molecular phosphorescence spectrum,
the radiative and the nonradiative decay rates arising from
spin−orbit coupling of the excited states, within the harmonic
oscillator model with origin displacement, distortion, and
Duschinsky rotation effects. Second-order perturbation theory
is applied to the intersystem crossing transition, and the spin−
vibronic coupling is considered.

We first benchmark these new formalisms to examine the
well-established photophysical properties of anthracene. Start-
ing from the excited states electronic structure at the CASSCF
level, the calculated phosphorescence spectrum is in good
agreement with the experiment. The intersystem crossing rates
from S1 to T1 and T2 states are evaluated at the second-order
perturbation level. It is found that S1→T2 is the major decay
channel with a rate constant of 0.26 × 108 s−1, while the S1→T1

decay rate is only 0.20 × 103 s−1. This is in excellent agreement
with the previous theoretical and experimental results. Then,
we choose the most popular green OLED material Ir(ppy)3 as
an example to deepen the understanding of the decay process
from the triplet to ground state in the organo-transition metal
complex. By using the vibration correlation function method,
we quantitatively predict the radiative decay rate to be 6.36 ×
105 s−1, the nonradiative decay rate 5.04 × 104 s−1 and the
resulting phosphorescence quantum efficiency is 92.7% from T1

to S0 for fac-Ir(ppy)3, which well reproduce the corresponding
experimental measurements. It is found that the stretching
vibration motions that largely contribute to the reorganization
energy mainly come from the geometry relaxations of C5−C56,
C2−C5, N55−N56, and Ir1−C2 bonds. These geometry
modifications not only give rise to the broadening of
phosphorescence spectrum but also provide decay channels
for the nonradiative intersystem crossing. These results indicate
that, when coupled with the state-of-the-art quantum chemical
calculations for the electronic structure, our approach can
provide quantitative description for the excited state decay
through the combined spin−orbit and nonadiabatic couplings.
Lastly, the present formalism is based on harmonic oscillator

approximation, which becomes less accurate for ‘floppy’
molecules with possible anharmonicity. Indeed, for a molecular
system with very few degrees of freedom, the electronic
excitation energy can only be dissipated through the few
channels, which requires large number of quanta of vibration,
resulting in severe anharmonicity. For relatively a large system
or long conjugated molecules, the electronic excitation energy
becomes smaller while the number of degrees of freedom
increases. As a result, the average quanta for vibration relaxation
are drastically reduced, as was shown in the case of conjugated
oligomers with increasing chain length.23 Namely, such
problem becomes less severe for large system, for which a
nonadiabatic electron dynamics is very difficult to carry out for
long time. Progress has been achieved steadily in this
direction.54

■ APPENDIX

Analytical derivation of correlation function from eq 36 to eq
38.
Starting from eq 36, the δ functions δ(z − m′) and δ(n′ − x′)

are integrated first, giving rise to the following express:

Figure 6. Calculated reorganization energies and the displacement
vectors for the normal modes with the largest reorganization energies
(inset).

Figure 7. Large reorganization energies (bottom) and the
corresponding coordinate modifications between S0 and T1 (top, the
blank columns are for bond lengths, the column filled lines for bond
angles).
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Then the δ function δ(xj − yj) and the first-order derivative
δ′(xk − yk) are integrated out, leaving only 2-fold integrations,
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Appling the definitions from eq 39−41, eq A2 becomes
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Now, we can double the dimension of the space by introducing
a new multidimensional variable yT = [xT,zT]and defining new
quantities in the new 2N-dimensional space as shown in eq
42−46, the following equation is yielded
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Finally, applying the multidimensional Gaussian integrations
and their derivatives, the final solution eq 38 is obtained.

■ ASSOCIATED CONTENT

*S Supporting Information
Selected bond lengths (Å), angles and torsion angles (deg) of
the S0 and T1 for the fac-Ir(ppy)3, and their differences, the
main normal modes contributions to the reorganization energy,
and the decomposition of the reorganization energy onto the
internal coordinate modifications are provided. This material is
available free of charge via the Internet at http://pubs.acs.org/

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: zgshuai@tsinghua.edu.cn.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grant Nos. 90921007, 20903102, and
21290190), and the Ministry of Science and Technology of
China through 973 Program (2009CB623600). Professor O.
Vahtras and Dr. X. Li are deeply acknowledged for their help in
Dalton calculations for the spin−orbit coupling constant at the
DFT level.

■ REFERENCES
(1) Kido, J.; Kimura, M.; Nagai, K. Science 1995, 267, 1332−1334.
(2) Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.;
Forrest, S. R. Nature 2006, 440, 908−912.
(3) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.;
Lussem, B.; Leo, K. Nature 2009, 459, 234−238.
(4) Yersin, H.; Finkenzeller, W. J. Triplet Emitter for Organic Light-
Emitting Diodes: Basic Properties. In Highly Efficient OLEDs with
Phosphorescent Materials ; Yersin, H., Ed.; Wiley-VCH Verlag GmbH &
Co. KGaA: Weiheim, Germany, 2008; pp 1−98.
(5) Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.;
Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151−154.
(6) Sajoto, T.; Djurovich, P. I.; Tamayo, A.; Yousufuddin, M.; Bau,
R.; Thompson, M. E.; Holmes, R. J.; Forrest, S. R. Inorg. Chem. 2005,
44, 7992−8003.
(7) Siebrand, W. Nonradiative Processes in Molecular Systems. In
Dynamics of Molecular Collisions; Miller, W. H., Ed.; Pelnum Press:
New York, 1976; pp 249−302.
(8) Lim, E. C. Vibronic Interactions and Luminescence in Aromatic
Molecules with Nonbonding Electrons. In Excited States; Lim, E. C.,
Ed.; Academic Press: New York, 1977; Vol. 3, pp 305−337.
(9) Marian, C. M. WIREs: Comput. Mol. Sci. 2012, 2, 187−203.
(10) Etinski, M.; Tatchen, J.; Marian, C. M. J. Chem. Phys. 2011, 134,
154105−9.
(11) Tatchen, J.; Gilka, N.; Marian, C. M. Phys. Chem. Chem. Phys.
2007, 9, 5209−5221.
(12) Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. J. Chem. Phys. 2007, 126,
114302−8.
(13) Niu, Y.; Peng, Q.; Deng, C.; Gao, X.; Shuai, Z. J. Phys. Chem. A
2010, 114, 7817−7831.
(14) Ianconescu, R.; Pollak, E. J. Phys. Chem. A 2004, 108, 7778−
7784.
(15) Peng, Q.; Yi, Y.; Shuai, Z.; Shao, J. J. Am. Chem. Soc. 2007, 129,
9333−9339.
(16) Deng, C.; Niu, Y.; Peng, Q.; Qin, A.; Shuai, Z.; Tang, B. Z. J.
Chem. Phys. 2011, 135, 014304−8.
(17) Wu, Q.; Deng, C.; Peng, Q.; Niu, Y.; Shuai, Z. J. Comput. Chem.
2012, 33, 1862−1869.
(18) Tavazzi, S.; Mora, S.; Alessandrini, L.; Silvestri, L. J. Chem. Phys.
2011, 134, 034707−8.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct300798t | J. Chem. Theory Comput. 2013, 9, 1132−11431142

http://pubs.acs.org/
mailto:zgshuai@tsinghua.edu.cn


(19) Liu, J.; Zhong, Y.; Lam, J. W. Y.; Lu, P.; Hong, Y.; Yu, Y.; Yue,
Y.; Faisal, M.; Sung, H. H. Y.; Williams, I. D.; Wong, K. S.; Tang, B. Z.
Macromolecules 2010, 43, 4921−4936.
(20) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40,
5361−5388.
(21) Lin, S. H.; Chang, C. H.; Liang, K. K.; Chang, R.; Shiu, Y. J.;
Zhang, J. M.; Yang, T. S.; Hayashi, M.; Hsu, F. C. Advances in Chemical
Physics. John Wiley & Sons: New York, 2002; Vol 121, pp 1−88.
(22) Werner, H. J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schutz,
M.; Others, A. MOLPRO, version 2009.1, a package of ab initio
programs; University College Cardiff Consultants Limited: Cardiff,
2009; available online: http://www.molpro.net.
(23) Jiang, Y.; Peng, Q.; Gao, X.; Shuai, Z.; Niu, Y.; Lin, S. H. J.
Mater. Chem. 2012, 22, 4491−4501.
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.
P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;
Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega,
N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
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