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Electron-phonon couplings and charge transport properties of α- and γ -graphyne nanosheets were
investigated from first-principles calculations by using the density-functional perturbation theory and
the Boltzmann transport equation. Wannier function-based interpolation techniques were applied to
obtain the ultra-dense electron-phonon coupling matrix elements. Due to the localization feature in
Wannier space, the interpolation based on truncated space is found to be accurate. We demonstrated
that the intrinsic electron-phonon scatterings in these two-dimensional carbon materials are domi-
nated by low-energy longitudinal-acoustic phonon scatterings over a wide range of temperatures. In
contrast, the high-frequency optical phonons play appreciable roles only at high temperature regimes.
The electron mobilities of α- and γ -graphynes are predicted to be ∼104 cm2 V−1 s−1 at room tem-
perature. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4887538]

I. INTRODUCTION

Graphene is a two-dimensional (2D) sheet of carbon
atoms, which exhibits unusual electronic properties,1 and
has been demonstrated as a promising material for carbon-
based electronics.2–4 The most exciting property of graphene
is probably its extremely high carrier mobility at room
temperature.4 There have been growing interests in explor-
ing new graphene-like carbon allotropes in recent years,5–7

such as graphynes.8, 9 The structure of graphyne is formed
by inserting C≡C triple bonds into the honeycomb lat-
tice of graphene, and it takes three typical forms: α-, β-,
and γ -graphynes.10 The electronic structure of α- and β-
graphynes features Dirac cones in its Brillouin zone much
as in graphene, while γ -graphyne is a semiconductor with
a finite band gap. Recently, graphdiyne,11–13 containing two
acetylenic linkages between neighboring benzene rings, has
attracted tremendous attention due to the first experimental
synthesis.14 The existence of Dirac cones indicates that the
intrinsic carrier mobility of graphyne might be as high as that
of graphene. Recent first-principles calculations based on de-
formation potential approximation predicted that carrier mo-
bilities in both α- and β-graphynes reach ∼104 cm2 V−1 s−1 at
room temperature, and the carrier mobility in 6,6,12-graphyne
could be even larger than that in graphene.15 Not only gra-
phynes with Dirac cones, but also graphdiyne with a bandgap
showed excellent transport properties with high electron mo-
bility (∼105 cm2 V−1 s−1) at room temperature.11

A key factor in determining the intrinsic carrier mobility
of a material is the electron-phonon (e-ph) coupling strength.
In our previous studies,11, 15–18 the deformation potential (DP)
theory proposed by Bardeen and Shockley19 was used to de-
scribe the e-ph coupling for charge transport, where only the

a)Electronic mail: zgshuai@tsinghua.edu.cn

longitudinal-acoustic phonon is considered without any dis-
persion, and the e-ph coupling matrix is simply expressed
by DP constant and the elastic constant. Both parameters
can be derived from first-principles by lattice dilation.16 In
graphene, the experimentally derived DP constant lied in a
broad range (e.g., 10–50 eV20–22), while the various theoreti-
cal calculations gave only a few eV (e.g., 2.6 eV,23 4.5 eV,24

5.14 eV16), well below the experiments. Optical phonon scat-
terings are absent in the DP theory, which have been shown
to play an important role in carrier scatterings at room tem-
perature such as in 2D MoS2.25 Thus, theoretical analysis of
e-ph couplings contributed by different phonon modes with
phonon dispersions beyond the DP theory is called for. Bo-
rysenko et al.24, 26 have studied the e-ph couplings in mono-
layer and bilayer graphene via first-principles lattice dynam-
ics calculations. It remains a challenge to address the charge
carrier scatterings with full consideration of e-ph couplings.
Recently, progresses have been made in Wannier-Fourier in-
terpolation method.27 Computation of e-ph coupling for com-
plex solid becomes possible on fine grids in the first Brillouin
zone for both electron and phonon states for large systems,
such as naphthalene28 and K3-picene.29

In the present work, we performed first-principles calcu-
lations for electronic structure, phonon bands, e-ph couplings,
carrier scattering/relaxation time and mobility in α- and γ -
graphynes. For comparison, e-ph couplings in graphene were
also calculated for benchmark. In order to obtain the ultra-
dense sampling of e-ph coupling matrix elements throughout
the Brillouin zone required in charge transport calculations,
the Wannier interpolation method27 was applied and the cor-
responding accuracy was also examined. The four most im-
portant in-plane DP phonon modes: transverse acoustic (TA),
longitudinal acoustic (LA), transverse optical (TO), and lon-
gitudinal optical (LO) modes were taken into account. We
show that the intrinsic charge transport over a wide range of
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temperature is dominated by LA phonon scatterings, due to
the strongest coupling strength between charge carriers and
LA phonons. However, scatterings with optical phonon modes
should not be neglected at high temperatures (e.g., 300 K for
graphene) or for even low electron energies states (e.g., the
electron near the Dirac cone for graphene and α-graphyne). It
has been found that the optical phonon scatterings in both α-
and γ -graphynes are weaker than those in graphene and can
be safely neglected at room temperature. The predicted car-
rier mobilities of both α- and γ -graphynes are on the order
of 104 cm2 V−1 s−1 at room temperature, which is consistent
with DP theory. The lower mobilities of α- and γ -graphynes
compared to graphene are due to the stronger LA phonon scat-
terings of graphynes.

II. METHODOLOGY AND COMPUTATIONAL DETAILS

Density functional perturbation theory (DFPT)30 is a
powerful tool to calculate the vibration properties and e-ph
coupling with full consideration of the phonon dispersion
and the corresponding normal modes obtained from the first-
principles inter-atomic force constants. The key process is to
calculate self-consistently the linear variations in both charge
density �ρ(r) and Kohn-Sham potential �VKS with respect
to atomic displacements u through first-order perturbation for
Kohn-Sham equation to give rise to ∂ρ

∂u
and

∂VKS
∂u

, starting from
∂V

ion

∂u
.
The e-ph coupling matrix element for the scattering of an

electron in band i at wavevector k to another state in band j
with wavevector k+q by a phonon mode λ with wavevector
q is described by

gλ
ji(k, q) =

√
¯

2Mωqλ

〈ψjk+q|�qλVKS|ψik〉, (1)

where |ψ ik〉 and |ψ jk+q〉 are the bare Bloch eigenstates of
electron, ωqλ is the phonon frequency, M is the atomic
mass in the unit cell, and �qλVKS is the derivative of
the self-consistent Kohn-Sham potential with respect to the
atomic displacement associated with the phonon mode λ and
wavevector q.�qλVKS is explicitly written as31

�qλVKS =
∑

R

∑
s

∂VKS

∂usR
· eqλ√

Ms

eiq·R
√

N
, (2)

where usR is the atomic displacement for the sth atom at the
lattice vector R, eqλ is the phonon displacement vector of the
λth mode with wavevector q, Ms is the mass of the sth atom,
and N is the number of unit cells.

Using the Fermi’s golden rule, the e-ph scattering rate for
an electron from state (i, k) to (j, k+q) is given by32

W (ik → jk + q) = 2π

¯

∣∣gλ
ji(k, q)

∣∣2
(1 − fjk+q)

× fik[nqλδ(εjk+q − εik − ¯ωqλ)

+ (1 + nqλ)δ(εjk+q − εik + ¯ωqλ)]

(3)

where fik is the electron distribution and nqλ is the phonon
distribution. ε is the electron energy. Then the electron distri-
bution variation rate due to e-ph scattering is expressed as32

∂fik

∂t
|scatt =

∑
qλj

[W (jk + q → ik) − W (ik → jk + q)]

= 2π

¯

∑
qλj

∣∣gλ
ji(k, q)

∣∣2{(1 − fik)fjk+q[nqλδ(εjk+q

− εik+¯ωqλ)+(1 + nqλ)δ(εjk+q−εik−¯ωqλ)]

− (1 − fjk+q)fik[nqλδ(εjk+q − εik − ¯ωqλ)

+ (1 + nqλ)δ(εjk+q − εik + ¯ωqλ)]} (4)

Under the constant relaxation time approximation:
∂f

ik
∂t

= − f
ik−f 0

ik

τ
ik

, where f 0
ik is the electron equilibrium distribution

that is Fermi-Dirac distribution, the e-ph scattering relaxation
time τ k is given by32

1

τ (i, k)
= 2π

¯

∑
jqλ

∣∣gλ
ji(k, q)

∣∣2

× {[
f 0

jk+q + n0
qλ

]
δ(εjk+q − εik − ¯ωqλ)

+ [
1 + n0

qλ − f 0
jk+q

]
δ(εjk+q − εik + ¯ωqλ)

}
. (5)

Here nqλ = n0
qλ, namely, phonon Bose-Einstein distribution.

The first and second δ-functions describe the absorption and
emission of a phonon ωqλ, respectively. The charge mobil-
ity can be obtained by solving the Boltzmann equation in the
relaxation time approximation to the first order at the weak
electric field.33 The carrier mobility is expressed as16

μ = e

∑
i

∫
τ (i, k) v2 (i, k) ∂f 0

ik
∂ε

ik
dk∑

i

∫
f 0

ikdk
, (6)

where v(i, k) = 1
¯
∇kεik is the group velocity of electron.

According to Eqs. (5) and (6), we need to evaluate in-
tegrals in k- and q-space overa fine grid for both electrons
and phonons with highly accurate e-ph matrix elements. We
employed the Wannier-Fourier interpolation method,27 which
was implemented in the following way:

(i) Determining the electronic Hamiltonian Hel
k , the phonon

dynamical matrix D
ph
q and the e-ph matrix elements

g(k, q) on a coarse grid N
k(q)
1 × N

k(q)
2 × N

k(q)
3 points by

DFPT.
(ii) The electronic Wannier states are determined by the max-

imally localized Wannier functions (MLWFs) method,34

|wiR〉 = 1√
N

∑
k

⎡
⎣∑

j

Uk
ji |φ̃jk〉

⎤
⎦ e−ik·R, (7)

where N is the number of unit cells, R is the real-space
lattice vector. |φ̃jk〉 is a smooth Bloch eigenstate, defined
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by projection,35

|φ̃ik〉 =
J∑

j=1

|φjk〉(S−1/2
k )ji , (8)

where |φik〉 =
J

k∑
j=1

|ψjk〉〈ψjk|gi〉, (Sk)ji = 〈φjk|φik〉 ·
|ψjk〉 is the Bloch eigenstate calculated from DFT
directly. gi(r) is a set of J localized initial guess of
WFs, such as s, p or hybrid orbitals. For isolated bands,
Jk at each k equal to the number of WFs J. However,
because of the overlap and hybridization between bands,
Jk could be larger than the preset J because the bands
are entangled within a defined energy window and the
overlap 〈ψjk|gi〉 becomes a rectangular Jk × J matrix.
In some cases, the energy bands of this projection do not
correspond to any of the original energy bands due to the
mixing between electronic states. In order to preserve
the properties of a system within a given energy range,
the frozen energy window is defined. The electronic
states lying within the frozen energy window are kept
unchanged in the projection step. The details for the
projection can be referred to Ref. 35.
Then, the unitary gauge matrix Uk

ji in Eq. (7) can be de-
termined by minimizing the mean squared spread of the
WFs,

� =
∑

i

[〈wi0|r2|wi0〉 − 〈wi0|r|wi0〉2]. (9)

Once {Uk} and the eigenvectors of the phonon dy-
namical matrix {eq} are obtained on the coarse grid (the
band index i and the phonon mode index λ are omitted
for clarity), the electronic Hamiltonian, the phonon dy-
namical matrix and the e-ph matrix elements in the real
space can be described as27

Hel
R

e
,R′

e
=

∑
k

e−ik·(R′
e−R

e
)U+

k Hel
k Uk, (10)

D
ph

R
p
,R′

p
=

∑
q

e
−iq·(R′

p−R
p

)eqD
ph
q e+

q , (11)

g(Re, Rp) = 1

Np

∑
k,q

e
−i(k·R

e
+q·R

p
)
U+

k+qg(k, q)Uke−1
q ,

(12)
where Re and Rp are the position of the unit cell for de-
scribing electron and phonon in real space, respectively.
For k(q)-grid N

k(q)
1 × N

k(q)
2 × N

k(q)
3 in reciprocal space,

there are Nk(q) = N
k(q)
1 × N

k(q)
2 × N

k(q)
3 unit cells in real

space. The number of Nk and Nq can be different, so Re
and Rp can also be different. The electronic Hamiltonian
matrix elements in real space Hel

R
e
,R′

e
decay with the dis-

tance
∣∣Re − R′

e

∣∣. The spatial decay is determined by the
localization of the electronic WFs. However, the local-
ization of phonon dynamical matrix D

ph

R
p
,R′

p
depends on

the dielectric screening, instead of the overlap of lattice
WFs centered in the unit cells R = Rp and R = R′

p. The

e-ph matrix elements vanish whenever Re or Rp corre-
sponding to a unit cell sufficiently distant from the origin
of the reference frame, because of the localization of both
Hel

R
e
,R′

e
and D

ph

R
p
,R′

p
in real space. Thus, we only need to

know a small number of quantities in real space.
(iii) The next step is the transformation from the real space

to the reciprocal space on the fine Brillouin zone grid.
The Hamiltonian, the phonon dynamical matrix, and the
e-ph matrix elements on the fine grid with N

′k(q)
1 × N

′k(q)
2

× N
′k(q)
3 points can be expressed as

Hel
k′ = Uk′

⎛
⎝ 1

Ne

∑
R

e

eik′ ·R
eH el

0,R
e

⎞
⎠ U+

k′ , (13)

D
ph

q′ = e+
q′

⎛
⎝ 1

Np

∑
Rp

e
iq′ ·RpD

ph

0,Rp

⎞
⎠ eq′ , (14)

g(k′, q′) = 1

Ne

∑
R

e
,R

p

e
i(k′ ·R

e
+q′ ·R

p
)
Uk′+q′g(Re, Rp)U+

k′ e. (15)

The summations are truncated outside of a real space su-
percell containing Nk(q) unit cells. By diagonalizing the
terms within the brackets in Eqs. (13) and (14) at fixed
k′, and q′, one can obtain the new e-ph matrix element g(k′,
q′) according to Eq. (15). A suitable size of coarse Bril-
louin zone grid and examine the spatial localization of
Hel

R
e
,R′

e
, D

ph

Rp,R
′
p
, g(Re, Rp).

All the electronic structure and phonon dispersion cal-
culations were performed based on the DFT and DFPT30

as implemented in the QUANTUM-ESPRESSO package.36

We used a plane wave basis set, ultrasoft pseudopotential,
and Perdew-Burke-Ernzerhof (PBE)36 generalized gradient
approximation (GGA) exchange-correlation functional. The
plane wave cutoff was 60 Ry for wavefunctions and 600 Ry
for the charge density. The interlayer distance was set to be
as large as 15 Å in order to eliminate interlayer interaction.
For structural optimizations and electronic structure calcu-
lations, the momentum space was sampled on a 36 × 36
× 1 Monkhorst-Pack37 grid for graphene and 18 × 18 × 1
grid for both α- and γ -graphynes. The Hellmann-Feynman
force components on each atom were relaxed to less than
0.0001 Ry/bohr.

The e-ph coupling calculations were carried out by the
Wannier interpolation method as implemented in the EPW
code.38 The electronic Wannier states were determined by
MLWFs with the WANNIER90 code.39 To obtain the electron
Hamiltonian in MLWFs representations, the in-plane bond-
ing WFs, pz-like WFs (one per carbon atom) and two s-like
WFs located above and below the center of the hexagons
in the unit cell of these systems were used for the initial
guess. These WFs contained the electronic states below and
around the Fermi level. A maximum frozen window of 5.6 eV
for graphene, 4.84 eV for α-graphyne and 2.48 eV for γ -
graphyne up the Fermi level was chosen to localize the
WFs, respectively. For the e-ph matrix elements in these
three carbon materials, electronic and phonon states were first



034704-4 Xi et al. J. Chem. Phys. 141, 034704 (2014)

FIG. 1. Structures of (a) graphene, (b) α-graphyne, and (c) γ -graphyne. The
dashed red rhombus indicates the unit cell. (d) The first Brillouin zone of
the unit cell with four high symmetry points. The lines b1 and b2 are the
reciprocal lattice vectors.

calculated on a coarse 6 × 6 × 1 k- and q-grids. The inter-
polated fine k- and q-grid in transport property calculations
was 120 × 120 × 1 for graphene, and 80 × 80 × 1 for α-
and γ -graphynes (the k- and q-grids are used the same size in
present work).

III. RESULTS AND DISCUSSION

A. The accuracy of Wannier-interpolation, taking
graphene as an example

In order to check the localization of electronic Hamil-
tonian, the phonon dynamical matrix and e-ph matrix ele-
ments in the real space and the corresponding accuracy of
the interpolated values in the reciprocal space, we examined
these physical quantities for graphene interpolated on three
different coarse k(q)-grids (6 × 6 × 1, 9 × 9 × 1, 12 × 12
× 1). The structure of graphene is shown in Fig. 1(a) with the
optimized lattice constant 2.462 Å. Typically MLWFs are lo-
calized within a few Å.40, 41 The spreads of WFs defined by
Eq. (9) with different truncations are less than 2 Å2, as shown
in Table I. The spatial decay of the largest components of elec-
tronic Hamiltonian, the phonon dynamical matrix and the e-
ph matrix elements in the real space with different truncate
grids are illustrated in Fig. 2. It is found that these physi-
cal quantities exponential decay with the distance |R| between
unit cells and thus all the three truncate distances are enough.

TABLE I. The spreads of three types of WFs in Å2 for graphene on three
different k(q)-grids: 6 × 6 × 1, 9 × 9 × 1, and 12 × 12 × 1, respectively.

Type of WFs 6 × 6 × 1 9 × 9 × 1 12 × 12 × 1

in-plane bonding WFs 0.580 0.595 0.600
pz-like WFs 0.878 0.903 0.909
s-like WFs 1.431 1.551 1.633

FIG. 2. Spatial decay of the largest components of (a) the Hamiltonian
Hel

Re,0
, (b) the dynamical matrix D

ph

Rp,0, (c) the e-ph coupling matrix elements

gRe,0
and (d) g0,R

p
with different truncate grids for graphene. The data are

normalized to their largest value. The dashed lines denote the truncate dis-
tances |R| corresponding to three coarse k(q)-grids (6 × 6 × 1, 9 × 9 × 1, 12
× 12 × 1), respectively.

To further examine the accuracy, we depict the electronic
band structure and phonon dispersion along the high symme-
try lines with different truncations in Fig. 3. The band struc-
tures below the frozen window are well reproduced with Wan-
nier interpolation when compared with the result from DFT
calculation for each coarse k-grid. The phonon dispersions
from interpolation of different coarse q-grids are exactly the
same to each other and well matched the results of DFT. We
should note that the localization of phonon dynamical ma-
trix is due to effectiveness of the dielectric screening in the
material, which is different to the localization of the elec-
tronic WFs. Since at k = K (Dirac point) the electronic states
are doubly degenerate for graphene, we define the square
of e-ph coupling matrix element averaged over the Fermi

FIG. 3. The band structures and phonon dispersions for graphene along the
high symmetry lines by (a), (e) DFT calculations and Wannier-interpolations
on (b), (f) 6 × 6 × 1, (c), (g) 9 × 9 × 1, (d), (h) 12 × 12 × 1 coarse k(q)-
grids, respectively. The dashed lines show the maximum frozen window to
localize the WFs.
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surface as42, 43〈g2
q〉F = ∑

i,j∈π,π∗
|gjK+q,iK|2/4 with LO phonon

q = � or K, where the sum is performed over the
two degenerate π and π∗ bands at the Dirac cone. The
factor of 4 in the denominator stems from four possi-
ble scattering channels for graphene at the Fermi sur-
face: intraband (π→π , π∗→π∗) and interband (π→π∗,
π∗→π ). It is found that the e-ph coupling matrix ele-
ments are almost the same for three different truncations
with 〈g2

�〉F = 0.0405 eV 2, 〈g2
K〉F = 0.1 eV2 and are in good

agreement with other results (0.0401 eV2,42 0.0405 eV2 43 for
q = �; 0.0986 eV2,42 0.0994 eV243 for q = K). In conclusion,
the electronic Hamiltonian, the phonon dynamical matrix, and
e-ph matrix elements are localized in the real space for differ-
ent truncations and the corresponding electronic band struc-
ture, phonon dispersion, and e-ph coupling matrix elements
are in good agreement with the results from DFT calculations
without truncation. The Wannier-interpolation method are re-
liable and the results interpolated on the coarse k(q)-grid 6
× 6 × 1 for graphene are chosen in the following discussions.

B. The electronic structure, phonon dispersion,
and corresponding localization for α-graphyne
and γ -graphyne

The structures of α-graphyne and γ -graphyne are illus-
trated in Figs. 1(b) and 1(c). The optimized lattice constants
are 6.987 Å for α-graphyne and 6.883 Å for γ -graphyne, re-
spectively. These results are in good agreement with previ-
ous GGA calculations (6.981 Å for α-graphyne and 6.883 Å
for γ -graphyne;9 6.889 Å for γ -graphyne44). The calculated
spreads of WFs in these systems are typically around 1 Å2,
see Table II, namely, very localized.

The band structures of α-graphyne and γ -graphyne are
depicted in Figs. 4(a) and 4(b). The black-solid lines and red
scatters stand for the electronic bands calculated without and
with Wannier interpolations, respectively. Within the maxi-
mum frozen window, the agreement is perfect. It indicates
good localization of the WFs. For α-graphyne, two Dirac
cones locate at K- and K′-points of the first Brillouin zone,
similar to graphene. By linearly fitting the π and π∗ band en-
ergies near k = K + k′ to the expression E(|k′|) = ¯vF |k′|,
we obtained the Fermi velocity of α-graphyne to be 0.75
× 106 m/s, consistent with previous DFT calculations.9, 45

Different from graphene, the bonds in α-graphyne origi-
nate from different types, both sp2 and sp1 carbon hybridiza-
tions, and the large carbon rings in α-graphyne leads to
weaker σ bonding. Figs. 5(a) and 5(b) plot the charge den-
sity distribution near the Fermi level of graphene and α-
graphyne, respectively. It is found that the π (π∗) bonding
between neighbouring carbon atoms in α-graphyne is weaker

TABLE II. The convergent average and largest spreads of WFs in Å2 for
graphene, α-graphyne, and γ -graphyne.

Graphene α-graphyne γ -graphyne

Average spread 0.908 0.854 0.916
Largest spread 1.431 1.013 1.022

FIG. 4. Band structures and phonon dispersions of (a), (c) α-graphyne and
(b), (d) γ -graphyne, respectively. The dispersion is along the high symmetry
lines. The black-solid lines and red scatters stand for the results from direct
DFT calculations and Wannier interpolations on 6 × 6 × 1 coarse k(q)-grids,
respectively. The dotted lines show the maximum frozen window to localize
the WFs. In (c) and (d), the blue and red lines stand for the special optical
modes (upper is LO, lower is TO) and acoustic modes (upper is LA, lower is
TA), respectively.

than that of graphene, leading to narrower band width and
smaller Fermi velocity. As will be discussed below, these
bonding characteristics significantly affect e-ph coupling in
α-graphyne. Different from graphene and α-graphyne, a di-
rect bandgap of 0.454 eV at the M-point is found in γ -
graphyne, which is consistent with others’ studies.46, 47 The
phonon dispersion relations, shown in Figs. 4(c) and 4(d),
can be derived once the phonon dynamical matrix is obtained
from the DFPT. The phonon frequencies in the dispersion
curves are all positive, indicating the structure stability. The
three lowest modes are the acoustic phonon modes and the
other 3n-3 (n is the number of atoms in the unit cell) modes
are all optical phonon modes. The acoustic modes include in-
plane and out-of-plane atomic displacements along the Carte-
sian axes, and the optical modes display the atomic displace-
ments with bond-bending and bond-stretching characters. In
graphene and α-graphyne, the Kohn anomaly48 is observed
at the �- and K-points (near 1558 cm−1 and 1281 cm−1

FIG. 5. Band-decomposed charge density distribution of the π (π∗) bands
near the Fermi level of (a) graphene and (b) α-graphyne from both top (upper)
and side (lower) views. The isovalue is 1.815 × 10−4 eÅ−3.
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TABLE III. Phonon energies in meV for LA, TA, LO and TO modes at the �, K, and M points in the first
Brillouin zone of graphene, α-graphyne, and γ -graphyne.

Graphene α-graphyne γ -graphyne

Phonon mode � K M � K M � K M

LA 0.0 123.6 78.8 0.0 15.6 9.7 0.0 11.2 17.9
TA 0.0 66.3 77.6 0.0 8.4 7.2 0.0 11.2 8.4
LO 193.2 158.8 172.6 255.8 273.9 271.1 173.8 168.3 167.8
TO 193.2 150.7 166.4 255.8 248.1 255.7 173.8 168.3 163.8

for graphene, 2063 cm−1 and 2001 cm−1 for α-graphyne, as
shown in Figs. 3(e) and 4(c), respectively) arising from the
strong e-ph coupling with optical phonon modes, which will
be discussed in Sec. III C. In the present study, we focus on
e-ph couplings with four in-plane DP phonon modes, which
include: TA, LA, TO (E2g symmetry) as well as LO (E2g).
The e-ph couplings to other phonon modes are insignificant
from our calculations, and are not discussed in this work. In
Figs. 4(c) and 4(d), the blue and red lines along high symme-
try directions stand for the special optical modes (upper is LO,
lower is TO) and acoustic modes (upper is LA, lower is TA)
in α- and γ -graphynes, respectively. The phonon energies of
LA, TA, LO, and TO modes at different symmetry points are
summarized in Table III.

To further investigate the localization of the Hamiltonian,
the dynamical matrix, and the e-ph coupling matrix in real
space for graphyne, we depict in Fig. 6 the spatial decay of the
largest components of the corresponding physical quantities
as a function of the inter unit cell distance, taking α-graphyne
as an example. It is found that the decay is indeed exponen-
tial. The similar behavior is found for γ -graphyne. It is found
that the decay is indeed exponential. As a consequence, we
only need to keep a small number of these physical quantities
for Wannier-interpolation. In the present work, these physical
quantities were truncated within a real space supercell con-

FIG. 6. Spatial decay of the largest components of (a) the Hamiltonian
Hel

Re,0
, (b) the dynamical matrix D

ph

Rp,0, (c) the e-ph coupling matrix elements

gRe,0
and (d) g0,Rp

for α-graphyne as a function of distance. The data are

normalized to their largest value and are taken along several directions.

taining Nk(q) = 36 unit cells for both electrons and phonons.
The corresponding truncation distance |R| = |Re(p)–R0| for

matrix elements is about 24.07 Å for α-graphyne and 23.81 Å
for γ -graphyne, respectively.

C. Electron-phonon couplings and deformation
potential

Now, following the calculations in truncated real space,
the Hamiltonian, dynamical matrix, and e-ph coupling matrix
are Fourier transformed back to the reciprocal space on ex-
tremely fine Brillouin zone grids. We first compare the square
of the e-ph coupling matrix elements for the optical phonon
modes in α-graphyne with those in graphene as defined in
Sec. III A. The results are summarized in Table IV. In α-
graphyne, 〈g2

�〉F = 0.0128 eV2(scattered by LO mode) and
〈g2

K〉F = 0.027 eV2 (scattered by TO mode) are about 70%
smaller than those in graphene (0.0405 eV2 at q = � and
0.1003 eV2 at q = K, respectively).

The smaller e-ph coupling matrix elements in α-
graphyne indicate the weaker Kohn anomaly, as can be seen
from the phonon dispersions for optical modes at q = � and
K in Fig. 7. An interesting finding is that in both graphene
and α-graphyne, the ratio 〈g2

K〉F ωK/〈g2
�〉F ω� is close to the

value of 2.0, which is similar to the case in 2D silicene and
germanene.49

Figs. 8(a)–8(c) depict the square of e-ph coupling matrix
elements in Eq. (1) as a function of the LA phonon wavevec-
tor q (near the center of Brillouin zone) for graphene, α-
graphyne, and γ -graphyne, respectively. The electronic states
(both initial and final states for e-ph scatterings) are limited to
the conduction band (CB) (the electronic wavevector k is in
the K-valley for graphene and α-graphyne, in the M-valley for
γ -graphyne). The scattering matrix elements manifest clear
isotropy near the center of Brillouin zone. In DP theory, for

TABLE IV. Phonon frequencies ω (in cm−1) and 〈g2
q〉

F
(in eV2) at �- and

K-points for LO mode in graphene, for LO mode at � and TO mode at K in
α-graphyne.

q at � q at K

ω 〈g2
K〉

F
ω 〈g2

K〉
F

〈g2
k 〉

F
ωK

〈g2
� 〉

F
ω

�

Graphene Ref. 43 1540 0.0405 1250 0.0994 1.98
Ref. 42 1586 0.0401 1320 0.0986 2.05

This work 1558 0.0405 1281 0.1003 2.04
α-graphyne This work 2063 0.0128 2001 0.0270 2.04
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FIG. 7. The phonon dispersions of LO and TO modes along the high sym-
metry lines for (a) graphene and (b) α-graphyne, respectively. The red lines
stand for LO mode and the black lines stand for TO mode.

scattering with acoustic phonons in the long-wavelength limit,
the matrix element is linear in |q|:50

Mλ
ii(k, q) = 〈i, k + q|δqλVSCF |i, k〉 = D1

λ|q|, (16)

where D1
λ is the first-order acoustic DP constant. According

to Eq. (16), the LA DP constants of graphene, α-graphyne,
and γ -graphyne are obtained by a linear fitting of the matrix
element at |q| → 0, as shown in Fig. 8(d). It is found that the
LA DP constant of graphene is 4.24 eV, close to others’ first-
principles calculations of the effective acoustic DP constants
(e.g., 4.5 eV by direct lattice dynamics calculations,24 6.8 eV
by the group theoretical considerations51). This value is also
in agreement with the result (5.14 eV16) obtained within the
DP theory, by linear fitting of the band edge shift with respect
to the unit cell dilation. The LA DP constants for α-graphyne
(7.34 eV) and γ -graphyne (7.77 eV) are larger than that of
graphene, suggesting stronger LA phonon scattering in α- and
γ -graphynes.

Different from intra-valley acoustic phonon scattering,
the optical phonon scattering and inter-valley acoustic phonon
scattering are treated by the zeroth-order DP theory50

Mλ
ii (k, q) = 〈i, k + q| δqλVSCF |i, k〉 = D0

λ, (17)

where D0
λ is the zeroth-order acoustic or optical DP constant.

Based on the Wannier interpolation evaluated e-ph coupling

FIG. 8. Contour plots showing the square of e-ph coupling matrix elements
|gλ

ji (k, q)|2 (in eV2) calculated by Wannier-interpolation for (a) graphene, (b)
α-graphyne, and (c) γ -graphyne, as a function of LA phonon wavevector q
(near the center of the Brillouin zone). k is at the CB minimum (K-point for
graphene and α-graphyne, M-point for γ -graphyne) and the initial i and final
j electron states are both limited to CB. (d) The matrix element of LA phonon
scattering as a function of phonon wavevector q in the long-wavelength limit.
The slope is the first-order LA DP constant. The solid lines are the fitting
curves. The block represents graphene, the circle represents α-graphyne and
the down-triangle γ -graphyne.

matrix elements and Eqs. (16) and (17), the LA, TA, LO, and
TO DP constants of graphene, α-graphyne, and γ -graphyne
are summarized in Table V. The DP constants of intra-valley
phonon scattering (i.e., M→M) in γ -graphyne show that the
main scattering modes are LA, LO, and TO. For graphene
and α-graphyne, due to the valley degeneracy, the DP con-
stants of both intra-valley scattering (i.e., K→ K by LA,
TA, LO, and TO) and inter-valley scattering (i.e., K→ K′

by LA, TA, LO, and TO) are considered. It is found that the
main scattering modes in both graphene and α-graphyne are
intra-valley LA, intra-valley LO, as well as inter-valley opti-
cal modes. The optical phonon DP constants in graphene are
larger than those in α-graphyne (e.g., D0

LO,KK is 3.78 × 108

eV/cm for graphene and 1.73 × 108 eV/cm for α-graphyne),

TABLE V. DP constants extracted for e-ph coupling in graphene, α-graphyne, and γ -graphyne for the electronic states (both initial and final) limited to the
CB minimum (K-valley for graphene and α-graphyne, M-valley for γ -graphyne). The symbol of N/A means no value output due to too small e-ph coupling.
Especially, only intra-valley DP is considered for γ -graphyne.

Phonon mode Graphene α-graphyne γ -graphyne

Intra-valley LA D1
LA,KK = 4.24 eV D1

LA,KK = 7.34 eV D1
LA,MM = 7.77 eV

Acoustic TA D1
TA,KK = 1.70 eV N/A N/A

Inter-valley LA N/A D0
LA,KK′ = 7.65×103 eV/cm . . .

Acoustic TA D0
TA,KK′ = 4.43 × 103 eV/cm D0

TA,KK′ = 3.00 × 105 eV/cm . . .

Intra-valley LO D0
L0,KK = 3.78 × 108 eV/cm D0

L0,KK = 1.73 × 108 eV/cm D0
L0,MM = 1.01 × 108 eV/cm

Optical TO N/A D0
T0,KK = 4.69 × 107 eV/cm D0

T0,MM = 1.17×108 eV/cm

Inter-valley LO D0
L0,KK′ = 5.40 × 108 eV/cm D0

L0,KK′ = 1.34×106 eV/cm . . .

Optical TO D0
T0,KK′ = 3.41 × 103 eV/cm D0

T0,KK′ = 2.48 × 108 eV/cm . . .
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resulting in stronger optical phonon scattering in α-graphyne
as mentioned before. Compared with graphene and α-
graphyne, the optical phonons scattering in γ -graphyne are
weaker from the results of optical phonon DP constants.

In order to better understand the different phonon scat-
tering mechanism in graphene and α-graphyne (the electronic
structure with Dirac cones), we utilize an analytical expres-
sion of the electron scattering rate. Presently, the intra-valley
scattering rate by acoustic mode λ (λ = LA and TA) is ex-
pressed as52

1

τ 1
kλ

=
(
D1

λ

)2
kBT εk

4¯3υ2
F ρυ2

λ

, (18)

here, ρ is the mass density (0.774 × 10−6 kg/m2 for graphene,
0.381 × 10−6 kg/m2 for α-graphyne), εk is the electron energy
and vF is the Fermi velocity near the Dirac cone. vλ denotes
the sound velocity, which can be obtained by linear fitting of
the acoustic phonon frequency ωqλ with respect to the phonon
wavevector q in the long-wavelength limit (ωqλ = vλ|q|).
We take the value of vLA = 21.70 × 103 m/s, vTA = 13.88
× 103 m/s for graphene, and vLA = 16.0 × 103 m/s, vTA
= 5.21 × 103 m/s for α-graphyne. The index 1 in the scatter-
ing time τ 1

kλ and DP constant D1
λ means first-order. Similarly,

the rate of optical phonon scattering (both intra- and inter-
valley transitions) as well as the inter-valley acoustic phonon
scattering is expressed as53

1

τ 0
kλ

=
(
D0

λ

)2

ρωqλ(¯υF )2
[(εk − ¯ωqλ)(nqλ + 1)�(εk − ¯ωqλ)

+ (εk + ¯ωqλ)nqλ], (19)

where �(x) is the Heaviside step function and nqλ is the
Bose-Einstein distribution function of phonon. The index 0
in the scattering time τ 0

kλ and DP constant D0
λ means the

zeroth-order scattering. In the case of inter-valley scattering
via acoustic and optical phonon modes, ¯ωqλ takes the re-
spective phonon energy at the zone-edge K-point correspond-
ing to electron transition K→ K′. The specific values of
phonon energies used in Eq. (19) can be found in Table III.
Fig. 9(a) shows the electron scattering times of graphene and
α-graphyne as a function of the electron energy in the K-
valley at room temperature. Notably, we define the overall
zeroth-order and first-order scattering rates as

1

τ 0
= 1

τLA,KK′
+ 1

τT A,KK′
+ 1

τLO,KK
+ 1

τLO,KK′

+ 1

τT O,KK
+ 1

τT O,KK′
, (20)

and

1

τ 1
= 1

τLA,KK
+ 1

τT A,KK
. (21)

As can be seen from Fig. 9(a), at low electronic energy,
the intra-valley acoustic phonon mode displays the lowest
scattering time consistent with its large coupling strength
in both graphene and α-graphyne. Meanwhile, compared to
graphene, α-graphyne exhibits lower first-order scattering
time due to its stronger acoustic phonon scattering. It is clear

FIG. 9. (a) Zeroth-order and first-order scattering times as a function of elec-
tron energy at room temperature for graphene (blue lines) and α-graphyne,
respectively. The solid lines are for first-order and dotted lines are for zeroth-
order. (b)–(d) The scattering times of an electron at the CB minimum for
different e-ph mode couplings as a function of temperature for graphene, α-
graphyne, and γ -graphyne, according to Eq. (5) (black lines for total, red
lines for LA, pink lines for TA, green lines for LO, and blue lines for TO).

from the figure that the role of optical phonon scattering must
be taken into accounts even at low electron energies, due to
their significant coupling strength, especially for graphene.
The discontinuities or steps in the curves of the zeroth-order
scattering time represent either the onset of optical phonon
emission or inter-valley scattering. For instance, the abrupt
decrease in the curve of the zeroth-order scattering time in α-
graphyne at ∼248 meV can be attributed to the emission of
a TO phonon of q = K according to Table III. Similarly, the
discontinuity for graphene is at ∼159 meV, due to the inter-
valley LO phonon scattering with q = K.

D. Charge carrier transport

With the electron energies, phonon energies, and e-ph
coupling matrix elements of graphene, α-graphyne and γ -
graphyne from the first-principles calculations, the electron
scattering times can be extracted according to Eq. (5). The
scattering times of an electron at the CB minimum for LA,
TA, LO, and TO modes as a function of temperature are
shown in Figs. 9(b)–9(d). The total scattering times are also
plotted in these figures based on Matthiessen’s rule. Con-
veniently, the electron (hole) scattering time with k at the
CB minimum (valence band VB maximum) for these three
systems at room temperature are summarized in Table VI.
It indicates that (i) the carrier scattering time (e.g., elec-
tron) by LA phonon scattering times at room temperature for
both graphene (12.78 ps) and α-graphyne (2.33 ps) are in
good agreement with our previous works based on the DP
theory (13.94 ps for graphene, 2.83 ps for α-graphyne);15

(ii) the LA phonon scattering is the main scattering mech-
anism over a large range of temperature for these systems,
even at room temperature, resulting from its strong coupling
strength; (iii) At low temperatures, due to the few excitation of
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TABLE VI. The scattering times (in ps) for electrons at CB minimum and
holes at VB maximum with different e-ph coupling mechanisms in graphene,
α-graphyne, and γ -graphyne at room temperature. The total scattering times
are also obtained with Matthiessen’s rule.

Graphene α-graphyne γ -graphyne

Phonon mode Hole Electron Hole Electron Hole Electron

LA 14.28 12.78 2.17 2.33 0.56 1.25
TA 161.32 111.46 711.64 882.80 16.30 20.27
LO 27.78 26.43 68.74 70.06 17.07 22.61
TO 74.98 76.02 33.57 34.29 59.19 79.78
Total 7.97 7.24 1.97 2.11 0.52 1.10

high-frequency optical phonons, the optical phonon scattering
is suppressed and the electron scattering time by optical
phonon scattering remains almost unchanged with increasing
temperature; (iv) the optical phonon scattering should not be
neglected at high temperatures, due to the increasing num-
ber of optical phonons and significant coupling strength, es-
pecially for graphene, where the scattering time curves of LA
and LO exhibit a crossover at around 400 K.

From the above analysis of e-ph couplings and electron
scattering times, it is elucidated that the LA phonon scattering
is the dominant mechanism over a wide range of temperature.
According to Eq. (6), we estimate the electron mobility by LA
phonon scattering for graphene, α-graphyne, and γ -graphyne,
as a function of temperature (Fig. 10). The electron mobil-
ity limited by LA phonon scattering displays the μ ∝ T−1

temperature dependence, which displays typical 2D transport
behavior with acoustic phonon scattering above the Bloch-
Grűneisen temperature.54 Compared to graphene, the mobil-
ity of both α-graphyne and γ -graphyne is found to be one
order of magnitude lower, resulting from the stronger e-ph
coupling strength with LA phonon. Table VII shows the elec-
tron and hole mobilities limited by different phonon scatter-
ing mechanisms for graphene, α-graphyne, and γ -graphyne
at room temperature. The overall mobilities are also obtained
based on Matthiessen’s rule. From the table, we see that scat-
tering by LA phonon is expected to be the most important
limiting factor for the mobility of 2D carbon materials inves-
tigated here. Actually, the electron velocity with energy kBT at

FIG. 10. Electron mobility for LA phonon scattering as a function of temper-
ature for graphene (green line), α-graphyne (red line), and γ -graphyne (blue
line). The mobility with the μαT−1 temperature dependence is shown.

TABLE VII. The electron and hole mobilties with different e-ph coupling
mechanisms for graphene, α-graphyne, and γ -graphyne at room temperature.
The total mobilites are also obtained with Matthiessen’s rule. The unit is 104

cm2 V−1 s−1.

Graphene α-graphyne γ -graphyne

Phonon mode Hole Electron Hole Electron Hole Electron

LA 41.38 34.12 0.99 1.07 0.39 2.42
TA 591.81 304.75 314.66 380.06 7.30 13.04
LO 82.43 78.22 73.41 75.12 7.61 10.05
TO 218.06 222.53 59.16 59.70 27.82 37.81
Total 23.49 20.05 0.96 1.03 0.35 1.62

300 K is about 105 m/s. The corresponding de Broglie wave-
length is 7 nm, which is much larger than the lattice constant,
thus the electron is scattered mainly by the acoustic phonons.
However, LO phonon scattering also plays an important role
to limit the carrier scattering times and mobilities at room
temperature for graphene, due to its strong coupling strength.
The electron mobilites for both α-graphyne and γ -graphyne
at room temperature achieve the order of 104 cm2 V−1 s−1,
close to our previous results with the DP theory.15

IV. CONCLUSIONS

We have performed first-principles calculations to inves-
tigate momentum-dependent e-ph coupling and intrinsic car-
rier transport properties in two novel 2D carbon materials:
α-graphyne and γ -graphyne. The e-ph coupling and charge
carrier transport in graphene were also studied for compari-
son. In order to obtain refined electron energies, phonon en-
ergies, and e-ph coupling matrix elements for mobility calcu-
lation, the Wannier-interpolation method was applied. Due to
the localization of the Hamiltonian, the dynamical matrix, and
the e-ph coupling matrix in Wannier space, the interpolation
based on truncated space are accurate. Our results elucidated
that the main scattering mechanism in these 2D carbon mate-
rials is LA phonon, while the optical phonon could play some
roles at high temperatures and even at low electron energies,
especially for graphene. The predicted intrinsic mobilities of
α-graphyne and γ -graphyne are both a few 104 cm2 V−1 s−1

at room temperature. The lower mobility for α-graphyne and
γ -graphyne compared to graphene is due to the stronger LA
phonon scattering in both systems.
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