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ABSTRACT: We propose an inner space perturbation theory (isPT) to replace the expensive
iterative diagonalization in the standard density matrix renormalization group theory (DMRG).
The retained reduced density matrix eigenstates are partitioned into the active and secondary
space. The first-order wave function and the second- and third-order energies are easily computed
by using one step Davidson iteration. Our formulation has several advantages including (i)
keeping a balance between the efficiency and accuracy, (ii) capturing more entanglement with the
same amount of computational time, (iii) recovery of the standard DMRG when all the basis
states belong to the active space. Numerical examples for the polyacenes and periacene show that
the efficiency gain is considerable and the accuracy loss due to the perturbation treatment is very
small, when half of the total basis states belong to the active space. Moreover, the perturbation calculations converge in all our
numerical examples.

1. INTRODUCTION

Density matrix renormalization group theory (DMRG)1 or its
modern name matrix product states (MPS) has been widely
accepted as a powerful wave function ansatz to treat strong
correlation system in quantum chemistry field, especially in
those static correlation dominant systems. It has been
successfully used to calculate the electronic structure of the π
conjugated systems,2−4 transition metals,5−7 etc. With the rapid
development of computer performance,8 the state-of-the-art
quantum chemistry DMRG (QC-DMRG) program9−11 nowa-
days can treat up to one hundred active orbitals which largely
surpasses the complete active space self-consistent field method
(CASSCF).12 However, the accuracy of DMRG decreases when
going from one-dimensional system to two- or three-dimen-
sional systems with the same number of retained basis states
(M), because of the so-called area law,13 and in general,
quantum chemistry is a three-dimensional problem. Several
methods were developed to solve this problem. Wouters et al.14

and Haegeman et al.15 explored correction in the tangent space
of MPS with configuration interaction method (CI-MPS) or
random phase approximation (RPA-MPS). Murg et al.16 and
Nakatani et al.17 extended one dimension MPS structure to tree
tensor network states (TTNS). TTNS can capture more
entanglement with the same M value in principle, because the
distance between two entangled orbitals is log(N) in TTNS
structure. The dimension of reduced Hilbert space, to be
diagonalized in each optimization step, is O(MZ) approx-
imately, where Z is the number of tree branches. Though the
Hamiltonian is never explicitly constructed, TTNS is still much
more expensive than MPS due to the calculation of H·C in the
iterative diagonalization algorithm, such as Davidson diagonal-
ization algorithm.18 Thus, staying in the same MPS framework

and increasing the M value is an appropriate choice. A typical
QC-DMRG calculation uses M = 1000−10 000. The main cost
of MPS algorithm is O(M3), coming from the matrix−matrix
product in calculating H·C. According to the numerical results
reported by Chan19 and our results shown below, the time cost
of the Davidson diagonalization process consists of nearly 90%
of the total, even with the massively parallel algorithm. This is
the most important restriction for M to be several thousand.
Therefore, if we can use a smaller M to achieve the same
accuracy, DMRG will be more efficient. In this work, we
propose a methodology to explore a larger M space to reach
higher accuracy without increasing the cost.
In the classic quantum chemistry theories, the single

reference perturbation theory (PT), like Møller−Plesset PT20

performs well if the Hatree-Fock single determinant is a good
starting point. The multireference PT, like the complete active
space perturbation theory (CASPT),21 performs well if the
CAS space can treat static correlation correctly. This indicates
that if the reference is qualitatively correct, PT could be a
suitable choice to balance the accuracy and efficiency. Since
DMRG always adapts the many body basis states and thus
restricts the low energy states in a proper small space, even a
small M can obtain a qualitatively correct result. This valuable
inherent nature of DMRG provides us an opportunity to treat a
small M space as a reference and apply perturbation theory in a
large M space on this good reference. To the best of our
knowledge, this feature has not been explored yet. Herein, we
propose a new formulation called DMRG inner space
perturbation theory (DMRG-isPT) to replace the expensive
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exact diagonalization procedure in each local matrix optimiza-
tion step in order to achieve high efficiency and maintain
accuracy at the same time. The word “inner” is used to
distinguish this formulation from the earlier developed DMRG
perturbation method, such as DMRG-CASPT,22 MPS-PT,23

and DMRG-NEVPT,24 which are developed to incorporate
dynamical correlation due to the frozen core orbitals and the
unoccupied secondary orbitals.
The rest of the paper is organized as follows. In the Theory

section, we describe this DMRG-isPT formulation and
algorithm. After this, we show two benchmark calculations,
one on the acene series and the other on a simple two-
dimensional molecule (5,3)-periacene. Finally, the conclusion is
given.

2. THEORY
2.1. DMRG Theory. DMRG theory and its algorithm have

been described in detail in many other excellent papers.19,25−27

Here, to be self-contained, we briefly review the most essential
parts of DMRG in MPS language.
Any wave function based on n one electron orbital |σ1⟩, |σ2⟩,

···, |σn⟩ can be exactly parametrized as
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ai is called the virtual bond index and σi is called the physical
index. The final ansatz is called MPS. This coefficient is
decomposed by n − 1 successive singular value decomposition
(SVD).

∑= †C U S Vab
d

ad dd db
(2)

S is a diagonal matrix and its dimension equals min {a, b}. If we
do not cut off the virtual bond dimension, the dimension of
matrix A grows up exponentially. That will be 1 × 4, 4 × 42,··· ,
4n/2−1 × 4n/2, 4n/2 × 4n/2−1,··· , 4 × 1, if n is even. Under the
variational principle, optimizing all matrices at one time is a
difficult task, because it is a set of nonlinear equations. One-site
DMRG algorithm optimizes each matrix successively to reach
an energy minimum. At each optimization step, the orbitals are
partitioned into two subsystems, A and B, and then an
eigenvalue equation is solved in a space spanned by the direct
product of A and B subsystem basis states |l⟩A ⊗ |r⟩B.

∑ ψ ψ=
′ ′

′ ′ ′ ′H E
l r

lrl r l r lr
(3)

The Hamiltonian H is a huge matrix and the dimension of H is
O(M2). Iterative diagonalization algorithm like Davidson
diagonalization algorithm is used to solve this eigenvalue
equation. At each Davidson iteration, H·ψ is calculated and H is
constructed directly and implicitly with composite operator
algorithm.28 This is the key point of QC-DMRG algorithm.

∑ψ ψ· = ⊗
′ ′

′ ′ ′ ′H O A O B[ ] [ ]
l r AB

ll rr l r
(4)

DMRG theory constrains the dimension of each matrix up to
M. If ai is larger than M, DMRG uses SVD algorithm or
diagonalizes the reduced density matrix to select the largest M
singular value components. These two methods are the same.
In fact, the information on wave function |ψ⟩ is compressed,

and the compressed |ψ̃⟩ is selected to minimize the norm ||ψ⟩ −
|ψ̃⟩|2 with a limited number of basis states, thus

∑ψ| ̃⟩ = | ⟩ | ⟩
=

s d d
d

M

d A B
1 (5)

s1, s2, ··· , sM are the largest M singular values in the whole set.
The |d⟩A, |d⟩B are the new basis states in subsystem A and B.
The discarded weight is defined as ϵ = 1−∑d=1

M sd, which is used
to measure the accuracy of DMRG calculation. If the singular
values are in descending order, the most essential space is in the
top-left corner of the whole space. Thus, we can exactly
diagonalize in this corner space and add perturbation when
considering the neglected outer space.

2.2. Many Body Perturbation Theory. Following the
Rayleigh−Schrödinger perturbation theory (RSPT)

̂ = ̂ + ̂H H U0 (6)

̂ | ⟩ = | ⟩H i E ii0
(0) (0) (0)

(7)

Here, Ĥ0, Ei
(0), and |i(0)⟩ are, respectively, the zeroth-order

Hamiltonian and the zeroth-order energy and wave function of
the ith state. Û is the perturbation. Then if we consider the
zeroth order wave function of the ith state |i(0)⟩, the first-order
wave function, the first-order and second-order energies are

| ⟩ = − ̂ ̂ − ̂ ̂ | ⟩−i P H E PU i( )i
(1)

0
(0) 1 (0)

(8)

= ⟨ | ̂ | ⟩E i U ii
(1) (0) (0)

(9)

= ⟨ | ̂ | ⟩E i U ii
(2) (0) (1)

(10)

Here, P̂ is a projection operator that projects a vector to the
space orthogonal to |i(0)⟩

̂ = − | ⟩⟨ |P i i1 (0) (0)
(11)

According to Wigner’s 2n + 1 rule, the third order energy can
also be calculated from the first-order wave function

= ⟨ | ̂ − | ⟩E i U E ii i
(3) (1) (1) (1)

(12)

The more detailed derivation of RSPT can be found in ref 29.
2.3. DMRG-isPT2/3 Method. We only consider the first

order wave function and up to the third order energy in this
work. We call them DMRG-isPT2 and DMRG-isPT3. In the
following derivation, Mp represents the number of subsystem
basis states which are retained in each DMRG sweep. In these
Mp basis, the first m basis states belong to the active space. So in
the two-site MPS algorithm, the dimension of the active space
is 16m2, and the dimension of the whole space is 16 Mp

2. In
Figure 1, the whole Hamiltonian is represented in matrix form
and the small top-left square is the active space Hamiltonian.
The basis states |ψ⟩ are classified into three groups. |ψi,j,k,...⟩
refers to the basis state that is exact eigenvector in the CAS
space; |ψp,q,r,...⟩ refers to the basis state that is in the CAS space
but orthogonal to |ψi,j,k,...⟩; |ψa,b,c,...⟩ refers to the basis state that is
outside the CAS space.
First, we need to define the zeroth-order Hamiltonian. Since

we exactly diagonalize the active space Hamiltonian, it is very
straightforward to treat the diagonal elements of the whole
Hamiltonian as Ĥ0, which is the black part shown in Figure 1.
In this partition scheme, |ψi,j,k,...⟩ = ∑lrClr

i,j,k,...|lr⟩ and |ψa,b,c,...⟩ = |
lr⟩a,b,c,... are eigenvectors of Ĥ0. But |ψp,q,r,...⟩ is not. Here, Clr

i is
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the coefficient of the ith eigenstate in the active space expanded
in the whole space, so Clr ≡ 0 if |lr⟩ ∉ CAS.
We consider the zeroth-order wave function of the ith state |

i(0)⟩. Apparently

ψ ψ= ⟨ | ̂ | ⟩ =E U 0i i i
(1) (0) (0)

(13)

As in the CASPT theory, |ψi,j,k,...
(0) ⟩ are exact eigenvectors in the

CAS space, so

ψ ψ ψ ψ⟨ | ̂ | ⟩ = ⟨ | ̂ − ̂ | ⟩ =U H H 0i p i p
(0) (0)

0 (14)

Then, according to eqs 8 and 10, the first-order wave function
correction and the second-order energy correction are
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The matrix element Uai = ⟨ψa
(0)|Û|ψi

(0)⟩ is the blue part of H
shown in Figure 1 and can be expressed as

∑
ψ ψ= ⟨ | ̂ − ̂ | ⟩
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Each matrix element Uai corresponds to one component in C′ =
HC. Then, all matrix elements can be calculated in just one step
Davidson iteration efficiently.
The third-order energy correction is a little bit complicated.

We define an intermediate coefficient

=
−

C
U

E E
a
i ai

i a
(0) (0)

(18)

According to eq 12
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As the second-order energy correction algorithm, each matrix
element of the first term in parentheses is just one component
of C′ = HC, so we still can calculate all matrix elements in one
Davidson iteration. H0 bb in the second term is the diagonal
element of H.
In DMRG-isPT2/3, “small space diagonalization + large

space perturbation” algorithm is adopted to replace the
standard large space diagonalization algorithm in each local
matrix optimization step. The sweep process is summarized as
follows:

(i) The subsystem is constructed that one is enlarged by
combining the neighbor site and the other is shrinked by
one site. The dimension of each subsystem is 4Mp.

(ii) The direct product of the first m basis states of each
subsystem spans an active space. The active space
Hamiltonian (dimension is 16m2) is diagonalized to
obtain the zeroth order eigenstate |ψi,j,k,...

(0) ⟩ and energy
Ei,j,k,...
(0) .

(iii) Based on eqs 15, 16, and 19, we calculate the first-order
wave function and second- and third-order energies in
the whole space (dimension is 16Mp

2).
(iv) With the first order corrected wave function, we select

the largest Mp singular value components and transform
the subsystem basis states from 4Mp to Mp by using SVD
algorithm. The first m basis states, which correspond to
the largest m singular values, are defined as the active
basis states. With this decimation, we can start a new
iteration at step i.

DMRG-isPT is in principle a multireference perturbation
method and the perturbation space can feed back to the active
space iteratively. Other than depending on one single
parameter M, the accuracy of DMRG-isPT depends on two
parameters (m, Mp). The upper limit of DMRG-isPT is M =Mp
standard DMRG, because in each optimization step, the wave
function is more accurate and then the retained basis states are
adapted more properly. Apparently, when all basis states belong
to the active space (m = Mp), DMRG-isPT recovers to the
standard DMRG. Thus, the advantage of DMRG-isPT is that it
is controllable in keeping a balance between the accuracy and
efficiency. And with the same amount of computational time, it
can treat a larger Mp and incorporate entanglement from the
larger space (Mp >M) than what the standard DMRG can treat.
This space, though treated at perturbation level, is vital to
obtain a quantitatively correct result. Because in the two and
three-dimensional systems, the discarded weight is not so small,
completely neglecting these discarded basis states is dangerous.
Including some of them at perturbation level is a reasonable
and efficient way. Moreover, we can do exact diagonalization in
the large space to check whether the perturbation treatment
works or not and update the wave function more properly at
the middle of each sweep (when the variational space is the
largest in most cases). If the system is large enough, the time
cost of this last step large space diagonalization will not be
dominant.
We can analyze the efficiency gain approximately now. In

each diagonalization step of the standard QC-DMRG
algorithm, the time cost is O(nMp

3k2), where n is the number
of Davidson iterations it takes. The time cost of calculating the
second order energy is O((Mp

2m + Mpm
2)k2), because the

active space coefficient Clr
i in eq 17 is just a m × m matrix. The

time cost of calculating the third order energy is the same as
one step QC-DMRG O(Mp

3k2). However, since the third order

Figure 1. Hamiltonian matrix. Different colors represent the active
space eigenvalue (red), diagonal element (black), first-order
interaction element (blue), zero element (white), and nonzero
element (gray).
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energy correction does not contribute to the optimization
process, we can calculate it only at the middle in each sweep
iteration, so it is for free. Therefore, in the DMRG-isPT
algorithm, the total time cost is O(nm3k2 + Mp

2mk2 + Mpm
2k2).

We assume that the prefactor is the same and the number of
Davidson iterations n is not related to the dimension of
Hamiltonian. Then, the ideal speedup is

=
×

× + +

=
+ +

n M k

n m k M mk M m k

nM

nm M m M m

speedup p

p p

p

p p

3 2

3 2 2 2 2 2

3

3 2 2
(20)

So when n or the ratio Mp/m is large, the efficiency gain of
DMRG-isPT is considerable. In our experience, n is usually
dozens if only one state is targeted. When several states are
targeted together, such as calculating excited states in the state-
average DMRG method, approximately, n will be multiplied by
the number of requested states.30 However, though the time
cost is saved, the memory cost is not changed if Mp equals M.
The DMRG-isPT algorithm is very easy to be implemented

in the existing DMRG or MPS code, because only the
diagonalization part needs to be slightly changed. Due to the
considerable efficiency gain, we expect our DMRG-isPT
algorithm can further enlarge the M value that the existing
DMRG code can deal with. In the next section, we give two
numerical calculation examples to confirm that this efficient
perturbation calculation applied on a small active space is
reliable.

3. BENCHMARKS
3.1. Acene Series. The acene series are a kind of quasi-one-

dimensional conjugated system (Figure 2a). Because of the

potential to be used in the organic electronic device, they have
been widely investigated both in theoretical and experimental
studies.31−34 One interesting question is that whether the
ground state will become triplet in the long acene limit due to
the increasing diradical character. Density functional theory
(DFT) calculations by Houk et al.32 predicted there exists a
singlet triplet crossover. However, the many quasi-degenerate
frontier orbitals in this system will result in strong static
correlation effect, therefore the standard DFT calculation may
fail. Thus, correlated electronic structure method is required.

Hachmann et al.33 performed ab initio DMRG calculation up to
[12]-acene with single-ζ basis and up to [6]-acene with double-
ζ basis. They predicted that in the infinite chain limit, the
ground state remains singlet and the singlet−triplet gap is 8.69
± 0.96 (STO-3G) and 3.33 ± 0.39 (DZ) kcal/mol. Other
correlated electronic structure methods were also used to study
this system35,36 and they obtained the similar results for short
chains. Chai et al.34 calculated this system with thermally
assisted-occupation density functional theory (TAO-DFT),
revealing that there is no singlet triplet crossover up to
[100]-acene and that the singlet−triplet gap is less than 1 kcal/
mol in the infinite chain limit. Since DMRG has been proved to
be very accurate in calculating such quasi-one-dimensional
system, we aim to extend DMRG calculation to longer chains
with model Hamiltonian.
The model Hamiltonian we choose is Pariser−Parr−Pople

model (PPP).37,38 It is the simplest but nontrivial chemical
model Hamiltonian including long-range electron−electron
interaction and is widely used in carbon-based conjugated
polymers. The Hamiltonian is as follows:

∑ ∑ ∑

∑

ε̂ = ̂ ̂ + ̂ ̂ + ̂ ̂

+ ̂ − ̂ −

σ
σ σ

σ
σ σ

† †
↑ ↓

<

H a a t a a Un n

V n Z n Z( )( )

i
i i i

ij
ij i j

i
i i i

i j
ij i i j j

{ }

(21)

The first term and the second term represent the site energy
and nearest neighbor hopping. The third term is the Hubbard
term representing the on-site Coulomb repulsion, and the last
term represents the long-range Coulomb interaction. All the
parameters we adopt here are the same as those used in ref 39.
Ui = 11.26 eV and tij = −2.40 eV are the standard values for a
conjugated carbon system, and the site energy differences are
neglected. The long-range Coulomb potential Vij is calculated
with Ohno−Klopman analytical formula:40,41

=
+ +

V
U U R

1

4/( )
ij

i j ij
2 2

(22)

The carbon−carbon bond length was fixed at 1.397 Å and set
to be uniform for all the bonds. We calculate the acene chains
from [2]-acene to [32]-acene and the maximum number of
orbitals is 130. Since DMRG can achieve very accurate result
with a small M in such quasi-one-dimensional system, we
calculate the lowest singlet and triplet state by DMRG-isPT2/3
with two parameter conditions, one is (m = 256, Mp = 1024),
the other is (m = 512,Mp = 1024). Meanwhile, we take the M =
1024 standard DMRG calculation as a reference. We calculate
the lowest energy state in the Sz = 0 and Sz = 1 subspace
respectively, and calculate the expectation value of S ̂2 to identify
the total spin of these two states.
In Figure 3, we present the energy error of the lowest singlet

and triplet state as a function of acene length. Figure 3a shows
the (m = 256, Mp = 1024) result, and Figure 3b shows the (m =
512, Mp = 1024) result. The M = 256 and 512 standard DMRG
calculation results are also plotted as a comparison. The energy
error almost linearly increases with the system size. But the
slope of standard DMRG is much larger than that of DMRG-
isPT. Even without energy correction, PT0 (blue circle), the
energy is also lower than the standard DMRG result. This is
because that at each optimization step, the wave function is
corrected in the large space, and after renormalization, more
entanglement from the large perturbation space is folded to the

Figure 2. (a) Structure of [n]-acene. (b) Structure of [5,3]-periacene.
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small active space. This is a feedback effect from the
perturbation space. Therefore, the active space is more
representative than standard DMRG in which the outer space
is completely neglected. This confirms that the correlation
effect of the outer space can be incorporated at this
perturbation level. The second order energy correction lowers
the total energy a lot (PT2, red triangle), especially in the
triplet state case. Because of the high accuracy in this quasi-one-
dimensional system, the third order energy correction (green
diamond) can not be clearly seen in this figure. But in fact, it
further lowers the total energy a little bit, indicating that the
perturbation calculation converges well. Besides, the DMRG-
isPT2/3 energy is always the upper bound of the true energy in
these calculations (the energy error is positive), even though
PT does not guarantee it. When half of the basis states belong
to the active space, (m = 512, Mp = 1024) case, the accuracy
loss is less than 1 meV for the singlet state and 2 meV for the
triplet state, which is 1 order of magnitude improvement
compared with the M = 512 standard DMRG calculation.
In Figure 4, we plot the singlet−triplet gap as a function of

the acene length. The results are compared with the available

experimental data,42−45 ab initio DMRG results33 and TAO-
DFT results.34 It shows that the DMRG-isPT result is reliable
and consistent with the existing experimental data and ab initio
DMRG results, but larger than TAO−DFT results, especially in
the long chain acenes. The singlet−triplet gap decreases
monotonically with the increase of acene length and it is 8.41
kcal/mol in [32]-acene. We also extrapolate from our data into
the infinite polyacene limit and we find that the function y = A1
exp−x/t1 + A2 exp−x/t2 + y0 can fit well and the adjusted R2 is
nearly 1. With this empirical function, the singlet−triplet gap in
the infinite chain limit is 8.30 kcal/mol.

3.2. (5,3)-Periacene. DMRG is very accurate in one-
dimensional or quasi-one-dimensional system. As the acene
series calculated above, hundreds of retained basis states can
give accurate enough low-lying states. However, the real
chemical system is in general two-dimensional or three-
dimensional. Large M value is always necessary to obtain an
accurate result or even a qualitatively correct result in some
cases. Periacene is a kind of two-dimensional polycyclic
aromatic hydrocarbons, viewed as a graphene fragment. Like
the polyacene, these systems have strong polyradical character.
Thus, correlated electronic structure method is required to treat
the static correlation effect. Yanai et al.46 calculated the (3,n)-
periacene with ab initio DMRG and they confirmed that the
polyradical character is strong in these systems. Here we choose
(5,3)-periacene as our model system (Figure 2b) to test how
DMRG-isPT2/3 performs in such two-dimensional molecule.
The Hamiltonian is still PPP Hamiltonian, and the same
parameters are adopted as the above acene series. The Mp we
select here equals 2000 and the m varies from 600 to 1400. At
each m value, we both use the standard DMRG (M = m) and
DMRG-isPT2/3 method to calculate the lowest singlet and
triplet state. All the results take the M = 2000 standard DMRG
result as a reference.
The energy errors of the lowest singlet, triplet, and singlet−

triplet gap as a function of the number of retained basis states
(m) in the active space are shown in Figure 5. In both standard
DMRG and DMRG-isPT calculation, the energy error of
singlet and triplet state decreases exponentially with the
increase of the number of retained basis states in the active
space. But, at the same m value, the error of standard DMRG
result (red plus) is nearly 1 order of magnitude larger than the

Figure 3. Energy error of the zeroth- (blue circle), second- (red
triangle), and third-order (green diamond) corrected energy of the
singlet (solid line) and triplet (dashed line) state of [n]-acene as a
function of the number of acene rings n, calculated using DMRG-
isPT2/3: (a) (m = 256, M = 1024), (b) (m = 512, M = 1024). For
comparison, the (a) M = 256 and (b) M = 512 standard DMRG
calculation results (cross) are also plotted. All results take the M =
1024 standard DMRG calculation result as a reference.

Figure 4. Singlet−triplet energy gap of [n]-acene as a function of the
number of acene rings n, calculated using DMRG-isPT3. For
comparison, the experimental data,42−45 QC-DMRG data in STO-
3G and DZ basis,33 and TAO-DFT data34 taken from the literature are
also plotted.
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other three perturbation corrected calculations, DMRG-isPT0,
PT2 and PT3. From PT0 to PT3, the energy error decreases as
expected. At the middle of each sweep, we also do exact
diagonalization in the whole space and the result (dvd, black
triangle) has a slight improvement compared with the PT3
result. With this exact diagonalization, we calculate the overlap
between the exact eigenvector and the first order corrected
wave function. It is larger than 0.99 in all cases. This confirms
that the perturbation calculation is valid. Even without the
energy correction, DMRG-isPT0 can achieve good improve-
ment, which is similar to the acene series calculation. But in this
two-dimensional system, this improvement is vital, especially in
calculating the energy difference. In Figure 5c, the M = 600
standard DMRG calculation leads to a wrong energy level
order, in which the lowest triplet state is 0.8 eV lower than the
lowest singlet state. Only when we increase the M value, the
energy level order can be corrected. But in our DMRG-isPT
calculation, even in m = 600 case, the energy level order is
correct and the gap error is less than 0.03 eV. This significant
improvement proves that the entanglement from the outer
space is important here and that perturbation treatment in
DMRG-isPT is enough to include such entanglement effect.
From the inset in Figure 5c, the gap error of DMRG-isPT0 is
smaller than the other second or third order energy corrected
result. We consider this is a result of the error cancellation.

When the m value is large enough, the gap error could converge
to 5 meV.
In summary, in such a simple two-dimensional molecule,

when using our DMRG-isPT method, the energy error of one
single state is 1 order of magnitude smaller than the standard
DMRG result with M = m. Moreover, the energy level order is
still correct even the active space is very small. When half of the
retained basis states are included in the active space, the energy
error of a single state is less than 0.3 eV and the error of relative
energy is less than 0.02 eV.
With a proper wave function prediction algorithm,47 the

typical number of Davidson iterations n here is 20. The relative
amounts of time spent at Davidson iteration in the standard
DMRG calculation with different M value is shown in Table 1.
It is over 90% in all cases as we expected. In the singlet state
calculation, the speedup of DMRG-isPT3 for the whole DMRG
sweep, compared to the M = 2000 standard DMRG calculation,
is shown in Figure 6. Without further optimizing our code, the
speedup varies between 6 and 2 from a small m to a large m.

Figure 5. Energy error of the zeroth- (blue cross), second- (green star), third-order (magenta square), and last step exact diagonalization (black
triangle) corrected energy of the (a) singlet and (b) triplet states and (c) singlet−triplet gap (the included figure is a zoom around 0 eV) of [5,3]-
periacene as a function of the number of active space basis states (m), calculated using DMRG-isPT2/3. The Y-axis is presented in logarithmic scales.
For comparison, theM = m standard DMRG calculation results (red plus) are also plotted. All results take theM = 2000 standard DMRG calculation
result as a reference.

Table 1. Relative Amounts of Time (%) Spent at Davidson
Iteration in the Standard DMRG Algorithm

M 600 800 1024 1200 1400 2000
time 93.8 94.6 93.0 95.8 96.4 96.0
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Since in our numerical test, =m Mp
1
2

is always a secure choice,

the speedup could be more than 4. Besides, the speedup may
increase if we target more than one state with the state-average
algorithm.

4. CONCLUSIONS

In this work, we propose an inner space perturbation theory to
optimize DMRG wave function (DMRG-isPT). We formulate
an efficient algorithm that only one step Davidson iteration is
required to calculate the first order wave function, the second
and third-order energy. DMRG-isPT formulation takes
advantage of the inherent nature of DMRG to increase the
algorithm efficiency and at the same time to maintain the
accuracy. Our numerical examples on the acene series and
(5,3)-periacene show that the efficiency gain is considerable
and that the accuracy loss due to the perturbation treatment is
very small, when half of the total basis states belong to the
active space. Thus, we can tackle with a larger M space now
than standard DMRG, which is essential to treat two or three-
dimensional system. We find that if M is small in standard
DMRG, the space neglected by decimation is often important
to reproduce correct singlet vs triplet state order in [5,3]-
periacene. But the entanglement of such space can be
incorporated with our DMRG-isPT method through an
efficient perturbation calculation, and even DMRG-isPT0 can
already achieve accurate results. Moreover, the perturbation
corrected energy is always an upper bound of the true energy
and converges in all our examples. Finally, We hope that this
isPT formulation may be useful to other advanced tensor
network states, such as TTNS. Because with this “small space
diagonalization + large space perturbation” algorithm, TTNS
can treat a large M efficiently and show its advantage over
DMRG in more general systems.
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