
Finite-Temperature TD-DMRG for the Carrier Mobility of Organic
Semiconductors
Weitang Li, Jiajun Ren, and Zhigang Shuai*

Cite This: J. Phys. Chem. Lett. 2020, 11, 4930−4936 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: A large number of nonadiabatic dynamical studies have been applied to reveal
the nature of carrier transport in organic semiconductors with different approximations. We
present here a “nearly exact” graphical-process-unit-based finite-temperature time-dependent
density matrix renormalization group (TD-DMRG) method to evaluate the carrier mobility in
organic semiconductors, as described by the electron−phonon model, in particular, in rubrene
crystal, one of the prototypical organic semiconductors, with parameters derived from first-
principles. We find that (i) TD-DMRG is a general and robust method that can bridge the gap
between hopping and band pictures, covering a wide range of electronic coupling strengths
and (ii) with realistic parameters, TD-DMRG is able to account for the experimentally
observed “band-like” transport behavior (∂μ/∂T < 0) in rubrene. We further study the long-
standing puzzle of the isotope effect for charge transport and unambiguously demonstrate that
the negative isotope effect (∂μ/∂m < 0 where m is the atomic mass) should be universal.

Organic semiconductors have attracted strong research
interest in the scientific community due to their

potential application in the next generation of electronic
devices.1 Charge mobility is a crucial physical parameter for
device performance. Qualitative and quantitative descriptions
of the charge-transport mechanism are essential for the
molecular design of high-efficiency organic electronic devices.2

Unfortunately, understanding the charge-transport mechanism
from a microscopic point of view is of continuous debate due
to the many-body electron−phonon interaction.3−5 In the
limiting cases of a strong or weak electron−phonon
interaction, the charge-transport behavior can be characterized
by a localized hopping picture6,7 or a delocalized band-
transport picture,8,9 respectively, but a large class of organic
semiconductors lie in the intermediate regime where the
strengths of the electronic coupling and the electron−phonon
interaction are comparable.10 Although a significant amount of
effort has been devoted to developing a carrier mobility theory
that is applicable in the intermediate regime,11−17 certain levels
of approximation are inevitably involved, and their effect on
the resulting mobility is usually unclear. For example, the
approximation adopted by Hannewald and coworkers is to
replace the complicated polaron-coupling operator after
polaron transformation by its thermal average over the
phononic part,15 and in the transient localization theory, a
relaxation time approximation is necessary to connect the
carrier mobility to the correlation function of the static tight-
binding model.16,17

In the absence of an analytical solution, a number of
numerical methods have been applied to the carrier mobility
problem.5 The family of methods includes Ehrenfest
dynamics,18,19 surface hopping,20,21 time-dependent wave

packet diffusion (TDWPD),22,23 and so on.24−27 However,
most of the methods have to sacrifice accuracy for applicability
to realistic materials. For example, Ehrenfest dynamics and
surface hopping treat the nuclear degree of freedom classically,
and TDWPD performs truncation to the stochastic Schrö-
dinger equation. It is only recently that numerically exact
methods such as hierarchical equations of motion
(HEOM)28,29 and quantum Monte Carlo (QMC)30 methods
have been used to tackle the charge-transport problem, but
these explorations are limited to model systems instead of
realistic materials.
Over the past years, the density matrix renormalization

group (DMRG) and its time-dependent variant (TD-DMRG)
have become powerful numerically “nearly exact” solvers for
quantum many-body systems.31−34 The application of TD-
DMRG to electron−phonon correlated systems has also been a
great success,35−38 achieving accuracy comparable to that of
the multiconfiguration time-dependent Hartree (MCTDH)
method, the de facto state-of-the-art method for nonadiabatic
dynamics in complex system.39 The latter is rarely applied for
finite temperature due to the computational burden. Recently,
we have implemented a highly efficient graphical-process-unit
(GPU)-based finite-temperature TD-DMRG with a projector
splitting algorithm for time evolution, which can tremendously
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increase the computational power while keeping the “nearly
exact” nature.36,40 Now we apply this method to evaluate the
carrier mobility, μ, in rubrene crystal, which is frequently
studied as one of the prototypical organic semiconductor
materials.41 Our calculation based on first-principle parameters

predicts “band-like” transport behavior ( <μ∂
∂ 0

T
) for the

rubrene crystal, which is in agreement with experimental
observations.42−44 Additionally, we find that if the electronic
coupling is set to be an adjustable parameter, then TD-DMRG
is able to bridge the gap between hopping and band pictures by
reproducing the analytical formula in the hopping limit and
approaching the asymptotic behavior in the band limit. We
further apply the method to study the long-standing puzzle of
isotope effect for charge transport pioneered by Munn et al. in
197045 and confirm the negative isotope effect46 (∂μ/∂m < 0
where m is the atomic mass) caused by the reduced polaron
size.
Theoretical investigations have revealed that in the rubrene

crystal, the electronic coupling and the hole mobility
(predicted by the TDWPD method) in the stacking direction
are much larger than those in other directions,47−49 so we map
the rubrene crystal to a 1D multimode Holstein model. The
1D approximation is commonly adopted by researchers when
new methodologies to compute mobility are proposed.20,47,50

The Hamiltonian of the model reads

∑

∑

∑

ω

ω

̂ = ̂ + ̂ + ̂

̂ = +

̂ =

̂ = +

−

+
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+
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where c† (c) and b† (b) are the creation (annihilation)
operators for the electron and the phonon, respectively, V is
the electronic coupling (also known as the transfer integral),
ωm is the frequency of the mth normal mode, and gm is the
dimensionless electron−phonon coupling constant between
the mth mode and the electronic degree of freedom. In this
Letter, we use V = 83 meV and nine vibration modes for each
molecule with vibration frequency ranging from 84 to 1594
cm−1 and the total reorganization energy λ = ∑mλm = ∑mgm

2ωm

= 75 meV unless otherwise stated. The parameters are adopted
from our previous work.48 The ωm and λm for each vibration
modes are shown in the Supporting Information. It should be
noted that in a number of publications, off-diagonal electron−
phonon coupling (also known as Peierls coupling or dynamic
disorder) is considered to be dominant in rubrene crystal;17,47

however, the conclusion is drawn from quite approximate
methodologies such as Ehrenfest dynamics and should be
subjected to verification by higher level methods. At the end of
this Letter, we demonstrate that TD-DMRG can be
generalized to models with off-diagonal electron−phonon
coupling, and we leave a thorough investigation of the
controversial role of off-diagonal electron−phonon coupling
in organic semiconductors20,26,28,51 to future work.
The carrier mobility is obtained via the Kubo formula4

∫ ∫μ = ⟨ ̂ ̂ ⟩ =
−∞

∞

−∞

∞

k Te
j t j t

k Te
C t t

1
2

( ) (0) d
1

2
( ) d

B 0 B 0
(2)

where for the Holstein Hamiltonian

∑̂ = −+
† †

+j
e VR

i
c c c c( )

n
n n n n

0
1 1

(3)

Here R is the intermolecular distance. With the nine-mode
Holstein Hamiltonian for the rubrene crystal, C(t) rapidly
decays to nearly zero before 6000 au, as shown in Figure 1. We

note that C(t) is expected to show some kind of Poincare ́
recurrence because we have treated the rubrene crystal as a
closed system. However, the recurrence is unlikely to happen
for realistic materials due to the presence of various
dissipations. Therefore, when integrating the correlation
function, the integration time limit is set to the nearly zero
region before the recurrence time to exclude the effect of the
artificial recurrence. An example of the recurrence is included
in the Supporting Information.
The evaluation of the current−current correlation function

= ⟨ ̂ ̂ ⟩C t j t j( ) ( ) (0) is performed by TD-DMRG through
imaginary and real-time propagation. The basic idea behind
TD-DMRG in the language of the matrix product state (MPS)
and matrix product operator (MPO) has already been
reviewed in detail,33,34 and a short overview can be found in
the Supporting Information. Here we only briefly summarize
the finite-temperature algorithm based on thermal field
dynamics, also known as the purification method.33,52 The
thermal equilibrium density matrix of any mixed state in
physical space P can be expressed as a partial trace over an
enlarged Hilbert space P ⊗ Q, where Q is an auxiliary space
chosen to be a copy of P. The thermal equilibrium density
operator is then expressed as a partial trace of the pure state Ψβ

in the enlarged Hilbert space over the Q space

ρ ̂ = =
|Ψ ⟩⟨Ψ |
|Ψ ⟩⟨Ψ |β

β
β β

β β

− ̂

Z
e Tr

Tr

H
Q

PQ (4)

Figure 1. Comparison of the correlation function C(t)/R2 obtained
by TD-DMRG (solid lines) and the analytical formula eq 7 derived
from FGR valid at the hopping limit (dashed lines). (a) V is set to 8.3
meV, where an analytical solution is available to demonstrate the
accuracy of the TD-DMRG method. (b) V is set to 83 meV, which is
the actual parameter for the rubrene crystal. C(t)/R2 is in atomic
units.
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and the pure state |Ψβ⟩ represented as an MPS is obtained by
the imaginary time propagation from the locally maximally
entangled state |I⟩ = ∑i|i⟩P|i⟩Q to β/2

|Ψ ⟩ = | ⟩β
β− ̂ Ie H/2

(5)

To calculate C(t), |Ψβ⟩ and ̂ |Ψ ⟩βj (0) are propagated in real

time to obtain |Ψ ⟩β
− ̂e iHt and ̂ |Ψ ⟩β

− ̂ je (0)iHt , and then C(t) is
calculated by

= ⟨Ψ | ̂ ̂ |Ψ ⟩β β
̂ − ̂C t j j Z( ) e (0)e (0) /iHt iHt

(6)

Here the current operator j(̂0) is represented as an MPO, and
the inner product for |Ψβ⟩ includes tracing over both the P
space and the Q space. In principle, both imaginary and real-
time propagation can be carried out by any time evolution
methods available to TD-DMRG.34 In this work, we use the
time-dependent variational-principle-based projector splitting
time evolution scheme,53 which is found to be relatively
efficient and accurate in our recent work.40 Readers are also
referred to our previous work on finite-temperature TD-
DMRG36 for more computational details. In most of our
simulations, the number of molecules in the periodic 1D chain
is 21, and the bond dimension is 32. In certain cases, we find a
larger system size and bond dimension necessary, such as at
low temperature (T = 200 K) or large electronic coupling (V =
500 meV).
Before presenting the calculated mobility for the rubrene

crystal, we show in Figure 1a the benchmark for the TD-
DMRG method by comparing the correlation function
calculated at V = 8.3 meV with an analytical solution valid in
the hopping limit obtained from Fermi’s Golden Rule (FGR)7

l
m
ooo
n
ooo

|
}
ooo
~
ooo∑= − [ + − − + ]ω ω−C t R V g n n n( )/ exp 2 1 e ( 1)e

m
m m m

i t
m

i t2 2 2 m m

(7)

where nm is the thermal average occupation number of the mth
vibrational mode at a given temperature. We can see from
Figure 1a that in the hopping limit, TD-DMRG is able to
reproduce the analytical formula with impressive precision.
The two curves by TD-DMRG and eq 7 exactly coincide with
each other for both the real and imaginary parts. We also show
in Figure 1b the same comparison but with V = 83 meV, the
actual parameter of the rubrene crystal that is in the
intermediate regime. For parameters of realistic material, eq
7 clearly fails, and a more accurate method is required.
Figure 2 shows the carrier mobility of rubrene crystal

obtained from TD-DMRG at various temperatures along with
results from the experiment.44 The “band-like” transport
behavior in which the mobility decreases with temperature is
captured by TD-DMRG, and the absolute mobility value (47
cm2/V·s) at T = 300 K closely matches the highest
experimental report (40 cm2/V·s).54 Nevertheless, the most
commonly reported experimental room-temperature mobility
for rubrene crystal is around 15−20 cm2/V·s.44,55−57 It should
be noted that for a number of organic semiconductors
including pentacene, the measured mobility has been increased
by a factor of ∼40 in the past two decades.58,59 A direct
comparison with experimental values should also include both
static and possibly dynamic off-diagonal disorders. For
comparison with TD-DMRG results, two widely used methods
valid, respectively, at the incoherent hopping regime and the
coherent band regime are also shown in Figure 2. In the

hopping regime, the carrier diffusion is described as site-to-site
hopping with transition rates given by FGR,7 whereas the
carrier mobility in the band regime is described by the
Boltzmann transport theory with relaxation time determined
by the first-order perturbation treatment of the electron−
phonon interaction. Although it is natural for the Boltzmann
transport theory to predict “band-like” behavior, the same is
not true for the hopping model unless the nuclear tunnelling
effect is taken into account, which becomes weaker at higher
temperature, and thus the mobility decreases with temper-
ature.7 Figure 2 also shows that although both FGR and the
Boltzmann transport theory overestimate the carrier mobility,
the prediction by FGR is more accurate than the Boltzmann
transport theory, especially at high temperature. The
observation naturally leads to the question, at which strength
of electronic coupling does the delocalized band picture better
describe the transport mechanism than the localized hopping
picture? Therefore, in Figure 3a, we further compare TD-
DMRG, FGR, and the Boltzmann transport theory from weak
to strong electronic coupling while holding the electron−
phonon coupling strength constant. When V ≪ λ, we find that
TD-DMRG reproduces FGR results perfectly, as expected
from the benchmark result in Figure 1a. As the electronic

Figure 2. Carrier mobility of rubrene crystal from T = 200 to 400 K
obtained from TD-DMRG along with experimental results.44 The
results obtained from FGR and the Boltzmann transport theory are
also shown for comparison, which are, respectively, valid at the
hopping regime and the band regime.

Figure 3. (a) Carrier mobility from weak to strong electronic
coupling (V) calculated by TD-DMRG, FGR (hopping limit), and
Boltzmann transport theory (band limit). (b) Mean free path (lmfp) of
the charge carrier from weak to strong electronic coupling calculated
by TD-DMRG. In both panels the electron−phonon coupling
parameters are adopted from the first-principle calculation of rubrene
crystal.
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coupling increases, the carrier mobility predicted by FGR
increases quadratically, whereas the TD-DMRG result
increases subquadratically, leading to a noticeable difference
between the two methods at V = 83 meV, the actual electronic
coupling in rubrene crystal. At this point, the delocalized band
picture sets in and shows a μ ∝ V3/2 behavior.8 Accordingly,
the slope of the TD-DMRG curve gradually changes from 2 to
3
2
, and the carrier mobility by TD-DMRG further deviates from

the FGR result. Unfortunately we cannot reproduce the band
limit as accurately as the hopping limit because of the
computationally prohibitive bond dimension required for large
V, and we estimate that the data for V = 500 meV has an error
larger than 10%. In this regime, FGR predicts a spurious μ ∝
V2 growth and finally yields mobility higher than the band
description at V > 200 meV, indicating the complete failure of
the perturbation treatment of the electronic coupling.
However, with V ≈ 100 meV, FGR still gives a quite
reasonable value of the carrier mobility, although the electronic
coupling is already too large to be formally considered as a
perturbation.10 We speculate that the success of the hopping
picture might be partly ascribed to the cancellation of errors;
that is, the fast quadratic growth compensates for the drawback
of neglecting the contribution from the coherent transport. In
Figure 3b, we have shown the mean free path (lmfp = vτ) of the
charge carrier calculated by TD-DMRG with the group
velocity, v, and relaxation time, τ, estimated by27

∫τ

= ⟨ ̂ ̂ ⟩

=
−∞

∞

v j j

C t
C

t

(0) (0)

1
2

Re ( )
Re (0)

d
(8)

We find that when V < 20 meV, lmfp/R is smaller than 1, so a
localized hopping picture is well-suited for this regime. For the
actual parameter of the rubrene crystal (V = 83 meV), lmfp/R is
found to be 2.4, which indicates that neither the hopping nor
the band picture is perfectly suitable for this regime, and an
unbiased method like TD-DMRG is necessary.
The isotope effect for charge transport is controversial in

that a number of methods predict different results. Here we use
the numerically exact TD-DMRG method to study the isotope
effect for charge transport in the rubrene crystal. Our previous
work points out that the nuclear tunneling effect plays an
indispensable role in the isotope effect.46 In this regard, TD-
DMRG serves as a suitable tool because it treats both the
electronic and vibrational degrees of freedom on an equal
footing quantum mechanically. In this work, we use two
different approaches to simulate isotope substitution, and they
eventually lead to the same conclusion. The first approach is to
perform a first-principles quantum chemistry calculation on an
isotope-substituted rubrene molecule to obtain new sets of
parameters for eq 1, as shown in Figure 4a. To preclude the
effect of numerical error, we also calculated the mobility of a
hypothetical rubrene where the atomic mass of carbon is 20
amu. The second approach to simulate the isotope effect is to
scale all vibration frequencies in native rubrene by a constant
factor while holding the respective reorganization energy
constant, as illustrated in Figure 4b. The calculated mobility by
the two approaches shows that TD-DMRG predicts a negative
isotope effect, which is in agreement with the experimental
result.44 The absolute value of the isotope effect

− ×μ
μ
′( )1 100% for 13C substitution is found to be ∼4%

by TD-DMRG.
To further analyze the origin of the negative isotope effect

from the TD-DMRG point of view, we calculated the coherent
length, L, from the reduced thermal equilibrium density
operator σ = Trph{ρβ} defined as60

σ

σ
=

∑ | |

∑ | |

( )
L

N

ij
N

ij

ij
N

ij

2

2
(9)

For a completely localized thermal equilibrium state, no
coherence is present, so |σij| = N−1δij and L = 1. For a
completely delocalized thermal equilibrium state, |σij| = N−1

and L = N. So L measures the length scale of the charge
delocalization or the polaron size. The calculated L for
different vibrational frequencies representing the effect of
isotopic substitution is shown in Figure 5. For temperature
ranging from T = 250 to 350 K, L decreases as ωm′/ωm
decreases, which implies that heavy isotopic substitution
reduces the polaron size.

Finally, we move on to discuss off-diagonal disorder, as it has
been proposed as the dominant mechanism for transport,
which was not included in the model Hamiltonian eq 1. This is
an interesting mechanism, already proposed by Munn and
Silbey in 198061,62 and strongly revived recently.17,18 Our
previous study based on molecular dynamics and the quantum-
tunneling-enabled hopping model for pentacene indicated that
dynamic disorder can indeed limit transport in the 1D model

Figure 4. Isotope effect on charge transport in the rubrene crystal
from T = 200 to 400 K. (a) Carrier mobility with increasing carbon
mass, m, and the respective ωm and λm are obtained by first-principle
calculations. (b) Carrier mobility at different vibrational frequencies
ω′m, with the original frequencies ωm as the unit and λm held as a
constant.

Figure 5. Coherent length, L, defined in eq 9 at different vibrational
frequencies from 250 to 350 K. λm for each mode is held as a constant.
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but not for higher dimensions, a conclusion in accordance with
Anderson’s theorem.51 Thus a comprehensive consideration of
the off-dynamic disorder should be carried out in high
dimensions. So far, our TD-DMRG algorithm is structured
for the 1D case. For the 2D case, a tensor-network-type
renormalization scheme could be considered, but the
computational complexity is much higher, and it deserves
further efforts to develop efficient algorithms. But in a
preliminary attempt to unravel the off-diagonal term in the
present study of the 1D case, we set V = 8.3 meV in the
hopping limit so that we can compare with our previous case
study.51 The off-diagonal electron−phonon coupling is
included in the system via the Holstein−Peierls Hamiltonian,
similar to eq 1, except that Ĥe−ph becomes

∑

∑

ω

ω

̂ = +

+ + +

−
† †

† †
+ +

†

H g b b c c

g b b c c c c

( )

( )( )

n m
m m n m n m n n

n m
m m n m n m n n n n

e ph
,

(1)
, ,

,

(2)
, , 1 1

(10)

Here we assume that gm
(1)gm

(2) = 0 and only one mode
contributes to the Peierls coupling. The parameters of
intramolecular vibration are adopted from the four-mode
parameters shown in the Supporting Information, and the
frequency of the intermolecular vibration mode is set to 50
cm−1. The mobility calculated by TD-DMRG as a function of
the standard deviation of the transfer integral (ΔV) over the
mean transfer integral (V) is shown in Figure 6. We consider

mobilities with three kinds of electron−phonon coupling
paradigms in Figure 6: (1) mobility with only Holstein
coupling, μH, (2) mobility with only Peierls coupling, μP, and
(3) mobility with both Holstein and Peierls coupling, μH−P.
With only Holstein coupling, there is actually no transfer
integral fluctuation, and μH is a constant. With only Peierls
coupling, μP first decreases, then increases, and finally
decreases again. In the absence of Holstein coupling, μP in
the ΔV → 0 limit approaches infinity, which is why μP first
decreases. The subsequent increase and decrease can be
ascribed to the stronger phonon-assisted current at the larger
ΔV and the disorder limited charge transport when ΔV → ∞,
respectively. On the contrary, μH−P steadily grows from ΔV/V
= 0.4 to 8 due to the phonon-assisted current. We also show in
Figure 6 the mobility obtained by Matthiessen’s rule 1/μM =
1/μH + 1/μP, and we find out that although the rule is

applicable at a small ΔV limit, it fails to describe the phonon-
assisted current, which is dominant at a large ΔV regime. Our
result is consistent with our previous report.51

In summary, we have demonstrated that the finite-temper-
ature TD-DMRG works as a general and powerful tool to
calculate the carrier mobility for organic semiconductors
covering a wide range of electron−phonon coupling strengths
from the hopping to the band regimes. When coupled to
molecular parameters from the first-principles calculation,
taking rubrene as an example, TD-DMRG successfully
accounts for the experimentally observed “band-like” transport
behavior. The long-standing controversy over the isotope effect
on mobility was definitely demonstrated to be negative. We
also carefully carried out a comparison with the well-
established solutions at the hopping and band limits and
found that TD-DMRG is able to reproduce the analytical result
in the hopping limit and approach the asymptotic behavior in
the band limit. Lastly, we show that TD-DMRG is able to take
off-diagonal electron−phonon coupling into consideration, as
TD-DMRG is quite a general approach. However, a
comprehensive description of the off-diagonal disorder should
go to a higher dimension for more general molecular
parameters, an intriguing subject for future work.
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