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ABSTRACT
Constructing matrix product operators (MPOs) is at the core of the modern density matrix renormalization group (DMRG) and its time
dependent formulation. For the DMRG to be conveniently used in different problems described by different Hamiltonians, in this work, we
propose a new generic algorithm to construct the MPO of an arbitrary operator with a sum-of-products form based on the bipartite graph
theory. We show that the method has the following advantages: (i) it is automatic in that only the definition of the operator is required;
(ii) it is symbolic thus free of any numerical error; (iii) the complementary operator technique can be fully employed so that the resulting
MPO is globally optimal for any given order of degrees of freedom; and (iv) the symmetry of the system could be fully employed to reduce
the dimension of MPO. To demonstrate the effectiveness of the new algorithm, the MPOs of Hamiltonians ranging from the prototypical
spin–boson model and the Holstein model to the more complicated ab initio electronic Hamiltonian and the anharmonic vibrational Hamil-
tonian with the sextic force field are constructed. It is found that for the former three cases, our automatic algorithm can reproduce exactly
the same MPOs as the optimally hand-crafted ones already known in the literature.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0018149., s

I. INTRODUCTION

The density matrix renormalization group (DMRG) method
originally proposed by White to solve the electronic structure of
one-dimensional strongly correlated lattice models1 has made great
progress in quantum chemistry in the last decade and has been
widely recognized as a state-of-the-art method for problems with a
large active space.2–9 In addition to the electronic correlation, the
DMRG also shows great potential to solve the vibrational corre-
lated problems.10–12 More recently, the time dependent (TD) for-
mulation of DMRG called TD-DMRG attracts a lot of attention
and quickly emerges as an efficient and “nearly exact” method for
quantum dynamics in complex systems. The TD-DMRG has been
used to simulate the spectroscopy and quantum dynamics, includ-
ing not only electron dynamics13,14 but also electron-vibrational
correlated dynamics.15–22 For high-dimensional quantum dynam-
ics, the multi-configuration time-dependent Hartree (MCTDH)

method has long been considered as the gold standard.23,24 How-
ever, it is limited by the exponential growth of computational cost
with the system size—the curse of dimensionality. The multilayer
MCTDH (ML-MCTDH) overcomes this limitation and has been
successfully used to simulate the dynamics of model systems with
thousands of degrees of freedom (DoF).25 Like ML-MCTDH, the
(TD-)DMRG could also achieve arbitrarily high accuracy with only
polynomial computational effort. It has been demonstrated in a
number of models with hundreds of DoFs to have the same accuracy
as ML-MCTDH.16–18,20,26

The recent rapid advances in the quantum chemistry DMRG
can be attributed to the formulation of DMRG as the matrix prod-
uct state (MPS),27 and the corresponding operator could be rep-
resented as a matrix product operator (MPO).28 The introduction
of MPS and MPO not only establishes a rigorous mathematical
foundation of DMRG but also makes the algorithm more power-
ful and convenient.29 Furthermore, it also opens the door to the
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development of more general tensor network states (TNS), such as
tree tensor network states (TTNS)30,31 and projected entangled pair
states (PEPS).32 The DMRG is actually a special type of TNS with
an one-dimensional matrix product ansatz, which is mathematically
known as a tensor train (TT) format. Interestingly, from the TNS
point of view, ML-MCTDH has a TTNS wavefunction ansatz with
all physical DoF (primitive basis) at the leaf-node (lowest layer),
which is mathematically called hierarchical Tucker format. In this
sense, the ansatz of DMRG and the ansatz of ML-MCTDH are
both low-rank approximations to the exact high-rank wavefunction,
although historically they are independently developed in different
research fields.1,23,25 The modern formulation of the DMRG algo-
rithm based on MPS and MPO is usually called the second gen-
eration DMRG algorithm,33 which could be seamlessly combined
with the variational principle to obtain the ground state and the
time dependent variational principle to carry out the time propaga-
tion.21,34 In addition, the exact global arithmetic, such as additions
Ψ1 + Ψ2, Ô1 + Ô2 and multiplications ÔΨ, Ô1Ô2, is only possi-
ble based on MPS and MPO. In this new formulation, the starting
point is to construct the MPO representation of the Hamiltonian
and all the other required operators as an input to the rest DMRG
calculations.

Generally speaking, there are two different types of operators.
One is the analytical operator, such as the ab initio electronic Hamil-
tonian in quantum chemistry, the nuclear kinetic energy operator
in an appropriate set of coordinates, and most of the physical and
chemical model Hamiltonians. In addition, these analytical opera-
tors are commonly in a sum-of-products (SOP) form. The other type
is the potential energy operator of real molecules met in the molec-
ular nuclear Schrödinger equation. More specifically, the potential
energy “operator” here is a complex N-dimensional potential energy
surface (PES) V(q) = V(q1, q2, . . . , qN) and has no analytical forms.
The potential energy (or energy derivative) at a specific structure q
could be calculated by electronic structure calculation. For small-
sized molecules with several atoms, very high accurate PESs are
usually constructed globally by fitting and interpolating the avail-
able dataset of ab initio data points. The recent developed algo-
rithm based on the neural network (NN) has made great progress
in the direction.35,36 For medium- and large-sized molecules, con-
structing full-dimensional global PESs is not even possible. The local
PES around the equilibrium or saddle point could be expanded as
a Taylor series with the high order energy derivatives. Although
the Taylor expansion of PES has several known limitations such as
that it could not describe double well potential and large amplitude
motion, it is still very useful to calculate the anharmonic frequency
of semi-rigid molecules and obtain a more accurate IR/Raman spec-
trum beyond the harmonic approximation.37–39 For most numerical
methods to solve the nuclear Schrödinger equation such as (ML-
)MCTDH, one difficulty is to calculate the matrix element such as
⟨Ψ|V(q)|Ψ⟩, which is an N-dimensional quadrature problem. To
reduce the cost, it is preferred to decompose the potential into an
SOP form. In this way, the matrix elements could be calculated as
a sum of product of N one-dimensional quadrature. The Taylor
series expansion of the local potential apparently has an SOP form.
For a general PES, Potfit40 and the more efficient multigrid Potfit
method41 could decompose the PES numerically into a Tucker for-
mat from the energy grid points, which is suitable to the MCTDH
calculation. The recently developed multilayer Potfit could integrate

more effectively with ML-MCTDH.42 Besides the Potfit-like meth-
ods, in the NN algorithm to fit the PES, if the activation function
is an exponential function instead of the common hyperbolic tan-
gent or sigmoid function, the NN with a single hidden layer also
gives an analytical SOP form.43 In addition to the SOP form, one
of the other widely used methods to overcome the N-dimensional
quadrature is called n-mode representation (n-MR) in which the
PES is expanded as a sum of one-mode potential, two-mode poten-
tial, and so on, expecting that the series could converge with a
small number of terms.44 Thus, only low dimensional quadrature
is needed. If necessary, each term in n-MR could be further fitted
as sum-of-products of analytical functions such as polynomial and
Morse types for each individual mode.45 It is also worth mention-
ing that several methods could directly use the N-dimensional PES,
such as the MCTDH combined with correlation discrete variable
(CDVR) representation46 and its multilayer generalization47 pro-
posed by Manthe and the collocation method proposed by Avila and
Carrington.48

In this work, we focus on the construction of MPO for those
operators that have an SOP form by definition or have been trans-
formed into an SOP form by fitting a high-dimensional function
(discrete points) as introduced above. For the same operator, the
form of MPO could be completely different as long as the final
product is correct. However, a more compact MPO will save com-
putational cost in practice. In order to construct a compact MPO,
several methods have been proposed. The most commonly used
method in quantum chemistry is to design the MPO symbolically
(or sometimes called analytically) by hand through inspecting the
recurrence relation between neighboring sites.49 The so-called com-
plementary operator technique is always fully explored to make the
MPO more compact, which is essential to the operators with long-
range interactions,50 such as the ab initio electronic Hamiltonian.
Although usually this method could give the optimal answer by a
smart design, it is not automatic in that different operators need a
re-design and a re-implementation. The second one is a numerically
“top-down” algorithm in which a naïve MPO is first constructed and
then compressed by the singular value decomposition (SVD) or by
removing the linearly dependent terms.51 This algorithm is generic
and automatic for different operators, while a numerical error is
introduced and its effect on the following calculations cannot be
well quantified in advance. Apart from this, the time cost spent on
the numerical compression is not negligible when the number of
terms in the operator is large. The third one, which is not widely
used in quantum chemistry, is to construct a finite-state automaton
to mimic the interaction terms in the operator.28 The automaton is
easy to be constructed for a translationally invariant lattice model
with short-range interactions but becomes extremely complicated
for long-range interactions.

Unlike the ab initio electronic Hamiltonian that has the same
formula for different systems and thus could be hard-coded in
implementation, a general Hamiltonian could be completely differ-
ent according to the different interactions within the system. Thus,
it is not efficient to use the first hand-crafting method mentioned
above to construct MPOs on a case-by-case basis. In addition to the
inefficiency, it is also difficult to obtain a globally optimal MPO when
the Hamiltonian is very complicated. Therefore, it is necessary and
desired to have a better MPO construction algorithm that has all the
advantages of the methods introduced above: (i) it is generic for all
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types of operators with an analytical SOP form; (ii) it is automatic,
directly from the symbolic operator strings to the MPO; and (iii) it
gives an optimal MPO. Here, “optimal” means that the MPO is as
compact as possible globally in a given order of DoF. (iv) It is sym-
bolic thus free of any numerical error. In this work, we propose a new
MPO construction algorithm that meets all the four requirements
based on the graph theory for a bipartite graph. The remaining sec-
tions of this paper are arranged as follows: In Sec. II, we will present
the idea of the new algorithm and the implementation details. In
Sec. III, several typical Hamiltonians are examined ranging from
the simple spin–boson model and the Holstein model to the more
complicated ab initio electronic Hamiltonian and the vibrational
Hamiltonian described by a sextic force field. All the calculations are
carried out with our in-house code Renormalizer.52 The resulting
MPOs are compared with the optimally hand-crafted ones reported
in the literature.

II. METHODOLOGY AND IMPLEMENTATION
A. MPO and complementary operator technique

The wavefunction ansatz in the DMRG is called the matrix
product states or tensor train, which is

∣Ψ⟩ = ∑
{a},{σ}

A[1]σ1
a1A[2]

σ2
a1a2⋯A[N]

σN
aN−1 ∣σ1σ2⋯σN⟩. (1)

For a system of distinguishable particles, N is the number of DoFs in
the system, and {|σi⟩} is the local basis such as the discrete variable
representation (DVR) basis for nuclear motion. For electronic sys-
tems, N is the number of orbitals, and {|σi⟩} is the occupation con-
figuration of each orbital (if using spatial-orbital, {|σi⟩} = {|vacuum⟩,
|↑⟩, |↓⟩, |↑↓⟩}; if using spin-orbital, {|σi⟩} = {|vacuum⟩, |occupied⟩}).
{A[i]σiai−1ai} are the local matrices connected by the indices ai, which
is commonly called (virtual) bond with bond dimension MS or
denoted as |ai|. σi is called the physical bond with dimension d. One
good feature of DMRG is that the accuracy is only determined by
the dimension of the virtual bond and thus could be systematically
improved.

Similar to the MPS, any operator Ô could be expressed as a
matrix product operator,29,49

Ô = ∑
{w},{σ},{σ′}

W[1]σ
′

1 ,σ1
w1 W[2]σ

′

2 ,σ2
w1w2⋯W[N]

σ′N ,σN
wN−1

× ∣σ′1σ
′

2⋯σ
′

N⟩⟨σNσN−1⋯σ1∣. (2)

The MPO could be constructed by sequential singular value decom-
positions from the matrix element representation Oσ′1σ

′

2⋯σ
′

N ,σ1σ2⋯σN ,
numerically, but it is not practical for a large system since the exact
decomposition needs the bond dimension MO to increase exponen-
tially, which is d2, d4, . . ., dN−2, dN , dN−2, . . ., d2 if N is even. In
practice, if an operator has an SOP form, the MPO is usually first
constructed symbolically,

Ô =∑
{z}

γz1z2⋯zN ẑ1ẑ2⋯ẑN (3)

= ∑
{w},{z}

W[1]z1
w1W[2]

z2
w1w2⋯W[N]

zN
wN−1 ẑ1ẑ2⋯ẑN (4)

= ∑
{w}

Ŵ[1]w1Ŵ[2]w1w2⋯Ŵ[N]wN−1 . (5)

In Eq. (3), {ẑi} represents the elementary operators of each local site
such as {Î, p̂2, x̂, x̂2, f (x̂, p̂), etc.} for a vibrational site or {Î, â†, â, â†â}
for an electronic site. The prefactor γz1z2⋯zN is commonly very sparse.
For example, in the ab initio electronic Hamiltonian, γz1z2⋯zN = 0,
if more than four ẑi are â† or â. γz1z2⋯zN could be regarded as the
coefficient of Ô on the operator basis ẑ1ẑ2⋯ẑN , and its matrix prod-
uct representation in Eq. (4) is very similar to an MPS in Eq. (1). In
Eq. (5), Ŵ[i] = ∑zi W[i]

zi ẑi is a matrix composed of some prefactor
attached symbolic operators acting locally on site i. From this sym-
bolic MPO, it is easy to obtain the matrix element representation as
Eq. (2) by expanding Ŵ[i] on the local basis {|σi⟩}.

From γz1z2⋯zN , if all terms with a nonzero prefactor are
extracted, Ô can also be expressed as

Ô =
K

∑
o=1

Ô[1 : N]o =
K

∑
o=1
(γo

N

∏
i=1

ẑoi ). (6)

K is the number of nonzero terms in total. ẑoi is the local operator of
the oth term at site i and could be any of the elementary operators in
{ẑi}. The slice [1:N] indicates that the operator is from site 1 to site
N. The MPO representation of each term Ô[1:N]o in Eq. (6) has MO
= 1 with Ŵ[i] = ẑoi , and the prefactor γo could be attached to any
site. The global arithmetic addition of any two MPOs (not necessary
to have MO = 1) is

γ1Ô[1 : N]1 + γ2Ô[1 : N]2 = [̂z1
1 ẑ2

1](
N−1

∏
i=2
[
ẑ1
i 0
0 ẑ2

i
])[

γ1ẑ1
N

γ2ẑ2
N
], (7)

which merges the local matrices block-diagonally. Therefore, the
naïve way to construct the MPO of Ô in Eq. (6) will give MO = K.

A more systematic way to derive the MPO is to use the recur-
rence relation between the neighboring sites. When the system is
split between site i and site i + 1 into the respective left (L, from
site 1 to i) and right (R, from site i + 1 to N) blocks, Ô could be
expressed as

Ô =
K

∑
oi=1

γoi ⋅ Ô[1 : i]oi ⊗ Ô[i + 1 : N]oi , (8)

where Ô[1 : i]oi = ∏
i
j=1 ẑ

oi
j and Ô[i + 1 : N]oi = ∏

N
j=i+1 ẑ

oi
j are usu-

ally called the normal operators. A recurrence relation between the
neighboring Ô[1 : i − 1]oi−1 and Ô[1 : i]oi could be defined as

Ô[1 : i]oi =
K

∑
oi−1=1

Ô[1 : i − 1]oi−1 Ô[i]oi−1oi (9)

from which the symbolic MPO in Eq. (5) could be obtained directly
with Ŵ[i] = Ô[i] and again the prefactor γoi could be attached to any
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site. This construction gives the same result as the global arithmetic
addition ofK MPOs withMO = 1 in Eq. (7). However, it is apparently
not optimal in that some of the interaction terms in Eq. (8) may share
the common operators in the set {Ô[1 : i]oi} or {Ô[i+ 1 : N]oi}. For
example, if K = 2 and Ô[i + 1 : N]1 ≡ Ô[i + 1 : N]2, while Ô[1 : i]1 ≠

Ô[1 : i]2, Ô[1 : i]1 and Ô[1 : i]2 could be summed up with the pref-
actors to create a complementary operator ˆ̃O[1 : i]1 = γ1Ô[1 : i]1
+γ2Ô[1 : i]2 on the L-block, and meanwhile, Ô[i + 1 : N]2 is removed
from the R-block so that Ô = ˆ̃O[1 : i]1 ⊗ Ô[i + 1 : N]1. Thus,
|oi|, the number of columns of Ô[i] is reduced by 1. This exam-
ple shows that the MPO representation of the same operator is not
unique as long as the product result is correct. Generally speak-
ing, to make the MPO compact, if there are redundant operators in
{Ô[i+ 1 : N]oi}({Ô[1 : i]oi}), the corresponding left (right) comple-
mentary operators could be created. This complementary operator
technique50 is of essential importance in constructing the MPO for
the ab initio electronic Hamiltonian by assembling all the 4-index
operators ∑pqrs gpqrsa

†
pa

†
qaras and 3-index operators ∑pqr gpqrsa

†
pa

†
qar

and part of the 2-index operators in one block, reducing MO from
O(N4

) to O(N2
).33,49 However, the complexity of designing com-

plementary operators comes from that in most Hamiltonians, both
Ô[1 : i]oi and Ô[i + 1 : N]oi in one interaction term are corre-
lated with other interaction terms. For instance, we add another two
terms in the former example, Ô[1:i]1 ≡ Ô[1:i]3 and Ô[1:i]2 ≡ Ô[1:i]4.
In this case, the optimal solution is to create complementary oper-
ators ˆ̃O[i + 1 : N]1 = γ1Ô[i + 1 : N]1 + γ3Ô[i + 1 : N]3 and
ˆ̃O[i + 1 : N]2 = γ2Ô[i + 1 : N]2 + γ4Ô[i + 1 : N]4, which will give
|oi| = 2. While creating the complementary operator ˆ̃O[1 : i]1 as
above will result in |oi| = 3. This toy example shows that the design
of complementary operators is nontrivial. A typical real example is
that when constructing the MPO of the ab initio electronic Hamil-
tonian, a different design strategy of the complementary operators
of the 2-index operators within one block will lead to a different MO
shown in Fig. 10 of Ref. 49, though all of them are O(N2

). Therefore,
the key to construct a compact MPO is to design and select the nor-
mal and complementary operators smartly at each bond to make the
number of retained operators as small as possible. As far as we know,
up to now it is still an art to design the complementary operators by
hand on a case-by-case basis rather than by a rigorous and automatic
procedure.

B. MPO construction algorithm via bipartite
graph theory

We propose to use the theory of bipartite graph to set a rigor-
ous foundation to construct the MPO automatically. We first rein-
terpret the operator selection problem at each bond mentioned in
Sec. II A as a minimum vertex cover problem in a bipartite graph
and then prove that the locally optimal solution is also globally
optimal.

The non-redundant operator set by removing the duplicated
operators in {Ô[1 : i]oi},{Ô[i + 1 : N]oi} of Eq. (8) is denoted as
U = {Û[1 : i]ui},V = {V̂[i + 1 : N]vi}, which are represented
as the vertices in Fig. 1. Unlike that the interaction pattern is one-
to-one between {Ô[1 : i]oi} and {Ô[i + 1 : N]oi}, it would be
one-to-many between {Û[1 : i]ui} and {V̂[i + 1 : N]vi}. The K

FIG. 1. An example of mapping the operator Ô = γ11Û1V̂1 +γ12Û1V̂2 +γ13Û1V̂3

+γ22Û2V̂2 +γ32Û3V̂2 +γ43Û4V̂3 +γ44Û4V̂4 to a bipartite graph G = (U, V, E). The
vertices represent the non-redundant operators in the L- and R-block. The edges
represent the interactions with a nonzero prefactor. The vertices in blue form a
minimum vertex cover. The edges in red form a maximum matching.

interaction terms are represented as the edges denoted as E each
connecting one vertex in U to one vertex in V with a prefactor
(weight) γuivi . A bipartite graph is often denoted as G = (U, V, E).
If the pth vertex in U is selected, the corresponding operator Û[1:i]p
in the L-block is retained. Meanwhile, the operators V̂[i + 1 : N]q
corresponding to the vertices in V, which are linked to Û[1:i]p
through edges, are multiplied by the prefactor of the certain edge and
then are added up to create a new complementary operator in the
R-block ∑q γpqV̂[i + 1 : N]q. The same rule is applied if a vertex in
V is selected. Therefore, the minimal number of retained operators
in one block, which could cover all the K interaction terms, is equal
to the minimal number of selected vertices in (U, V), which could
cover all the edges in E (shown in blue in Fig. 1). The latter problem
is called the minimum vertex cover in graph theory. For a bipartite
graph described here, the König theorem proves that the number of
vertices in the minimum vertex cover is equal to the number of edges
in the maximum matching.53 A matching is an edge set in which
any two edges do not share one vertex. The maximum matching
shown in red in Fig. 1 is the matching having the maximal number
of edges, which could be solved efficiently by the Hungarian algo-
rithm54 with complexity O(nm) or the Hopcroft–Karp algorithm55

with complexity O(
√
nm) through finding an augmenting path.53

Here, n andm are the total number of vertices and edges in the bipar-
tite graph, respectively. Once the maximum matching is found, the
vertices in the minimum vertex cover could be obtained easily, and
the retained operators are optimally selected according to the rules
above.

For a DMRG chain with a certain order, the whole procedure
to construct the MPO of Ô from site 1 to N (from N to 1 is similar)
is summarized as follows:
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1. The incoming non-redundant operator set of site i is known
as {Ŵ[1 : i − 1]wi−1} ({Ŵ[1:0]} is {1}), which are also the out-
going operators of site i − 1. Commonly, {Ŵ[1 : i − 1]wi−1}

includes both normal operators and complementary operators.
Next, {Ŵ[1 : i − 1]wi−1} is multiplied by the local elemen-
tary operators {ẑi} on site i to form a non-redundant oper-
ator set {Û[1 : i]ui} = {Ŵ[1 : i − 1]wi−1} ⊗ {ẑi}. The R-
block non-redundant operator set is {V̂[i + 1 : N]vi} in which
all operators are normal operators. Note that for efficiency,
only the interaction terms with a nonzero prefactor are nec-
essary to be included in the operator sets {Û[1 : i]ui} and
{V̂[i + 1 : N]vi}. Hence, at this boundary between site i and
i + 1, Ô = ∑uivi γuivi Û[1 : i]ui ⊗ V̂[i + 1 : N]vi .

2. The operators in {Û[1 : i]ui}, {V̂[i + 1 : N]vi} and the inter-
actions between them are represented as vertices and edges
to form a bipartite graph G = (U, V, E) (see Fig. 1). After-
ward, the maximum matching and the corresponding mini-
mum vertex cover of this bipartite graph are found with the
Hungarian algorithm or the Hopcroft–Karp algorithm. Next,
iterating through each vertex in the minimum vertex cover
once:

2.1. If the vertex is the pth vertex in U, the operator Û[1:i]p is
retained, and meanwhile, the edges linked to it are removed
from the graph.

2.2. If the vertex is the qth vertex in V, the complementary
operator linked through edges to V̂[i + 1 : N]q is cre-
ated and retained, which is ˆ̃U[1 : i]q = ∑p γpqÛ[1 : i]p.
Meanwhile, the edges are removed.

The reason to remove the edges after each visit is to avoid the
double-counting of the interactions. After all the vertices in the
minimum vertex cover are visited once, there will be no edge
in the graph.

3. The retained operators Û[1:i]p and ˆ̃U[1 : i]q together form
a new non-redundant operator set {Ŵ[1 : i]wi} in the L-
block. It is the outgoing operator set of site i and meanwhile
is the incoming operator set of site i + 1. After that, with
{Ŵ[1 : i − 1]wi−1} and {Ŵ[1 : i]wi}, the local symbolic MPO
Ŵ[i] is easy to obtain according to the recurrence relation
Ŵ[1:i] = Ŵ[1:i − 1]Ŵ[i]. In fact, the local prefactor matrix
W[i]ziwi−1wi in Ŵ[i]wi−1wi = ∑zi W[i]

zi
wi−1wi ẑi is the transforma-

tion matrix (reshaped to be W[i]wi−1zi ,wi ) of operator basis from
{Ŵ[1 : i − 1]wi−1}⊗ {ẑi} to {Ŵ[1 : i]wi}.

Return back to step 1.

The procedure described above is apparently a locally optimal
solution, since the selected operators have already been the min-
imum vertex cover at each boundary when sweeping from left to
right. To prove that the locally optimal solution is also globally opti-
mal, we should prove that at each boundary between site i and
i + 1, the number of edges in the maximum matching (the num-
ber of vertices in the minimum vertex cover) is the same no mat-
ter whether the operator set of L-block is composed of all normal
operators or is composed of both normal operators and comple-
mentary operator as {Ŵ[1 : i]wi} according to steps 1–3. Following
Eq. (3), if the coefficient tensor γz1z2⋯zN is reshaped as a matrix
γi = γz1z2⋯zi ,zi+1⋯zN , it could be regarded as the coefficient matrix of Ô

expanded on the operator basis {ẑ1 ⊗ ⋯ ⊗ ẑi} ⊗ {ẑi+1 ⊗ ⋯ ⊗ ẑN} in
the operator space. γi is called the unfolding matrix of γ in Ref. 56
whose rank is denoted as ri called TT-rank. The bipartite graph
G[i] = (U[i], V[i], E[i]) at the boundary between site i and site i + 1
is U[i] = {ẑ1 ⊗ ⋯ ⊗ ẑi}, V[i] = {ẑi+1 ⊗ ⋯ ⊗ ẑN}, and the edges
E[i] have a one-to-one correspondence to the nonzero matrix ele-
ments in γi. In the bipartite graph theory, the matrix γi could also
be regarded as a symbolic bipartite adjacency matrix for which only
that the matrix elements are zero or nonzero is important. Lovász
proposed the theorem that the rank of the symbolic adjacency matrix
is equal to the number of edges of a maximum matching.57 There-
fore, since U[i] and V[i] are composed of all normal operators, using
the rules described above to select the normal and complementary
operators, the ideally minimal number of retained operators at this
boundary is equal to ri, the rank of matrix γi. In the Appendix, we
prove that sweeping from left to right as the procedure above will
not change the rank of the adjacency matrix at the same bound-
ary. It is worth noting that in Ref. 51, the ideal rank ri of MPO at
the ith bond is expected to be approached by numerical SVD com-
pression, deparallelization, and delinearization, but it is not guaran-
teed because of the numerical error. However, here, it is guaranteed
symbolically via the bipartite graph theory. In addition, the scaling
of the current algorithm is roughly O(K3/2N) with the Hopcroft–
Karp algorithm. In comparison, the scaling of the SVD-based algo-
rithm is roughly O(K3d2N). Thus, the current algorithm is much
cheaper.

Several other advantages of the algorithm are that (i) the spar-
sity of MPO is fully maintained, which could be used to reduce the
computational cost during the tensor contraction in DMRG sin-
gle state or time evolution algorithms. (ii) The symmetry could be
directly implemented by attaching the good quantum numbers on
each normal and complementary operator. (iii) The algorithm not
only works for MPO construction but also works for MPS construc-
tion if the wavefunction in the Fock space representation has already
been known. For the same reason, the obtained MPS is the most
compact one to represent the wavefunction exactly.

Finally, it should be mentioned that for a system in which the
interaction pattern is inhomogeneous, the order of DoFs will affect
the size of MPO. It is still unclear whether there is an algorithm,
which could efficiently find out a specific order giving the minimal
MPO. However, in our opinion, this problem is less of a priority than
the widely known ordering problem with respect to the accuracy of
DMRG calculation.58,59

III. RESULTS
In this section, we will demonstrate the effectiveness of the new

algorithm by constructing the MPOs of Hamiltonians ranging from
the simple spin–boson model and the Holstein model to the more
complicated ab initio electronic Hamiltonian and the vibrational
Hamiltonian with a sextic force field.

A. Spin–boson model and Holstein model
The spin–boson model [expressed in the first quantization for-

malism in Eq. (10)] describes a two-level system coupled with a
harmonic bath, which is widely used to investigate the quantum
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dissipation,

ĤSBM = εσ̂z + Δσ̂x +
1
2∑i
(p̂2

i + ω2
i q̂

2
i ) + σ̂z∑

i
ciq̂i. (10)

The Holstein model [expressed in the second quantization formal-
ism in Eq. (11)] is also a widely used electron-vibrational coupling
model to describe the charge transport, energy transfer, and spec-
troscopy of molecular aggregates.17,21,22,60,61 It could be regarded as
a group of two-level systems as the spin–boson model coupled with
each other through coupling constant Jij,

ĤHolstein =∑
i
εia†

i ai +∑
i≠j

Jija†
i aj +∑

in
ωinb†

inbin

+∑
in
ωingina†

i ai(b
†
in + bin). (11)

Both of the two models are often adopted to benchmark the quan-
tum dynamics methods. We put the two models in the same section
because the spin–boson model could be regarded as a one-site Hol-
stein model with an additional interstate coupling Δ, and thus, the
MPOs of them are very similar. We test a spin–boson model with
100 discrete modes and the order is [spin, v1, v2, . . ., v100]. We
also test two Holstein models with 20 electronic sites and both of
them have two vibrational modes of each electronic site, but the for-
mer only has one-dimensional nearest-neighbor electronic hopping,
while the latter has long-range hoppings between any two electronic
sites. The order of the Holstein model is [e1, v1,1, v1,2, e2, v2,1, v2,2, . . .,
e20, v20,1, v20,2]. The MPO bond dimension MO vs the bond index
is shown in Fig. 2. The reference results (blue line) are based on a
hand-crafted strategy in which the normal operators for the elec-
tronic coupling terms are switched to the complementary operators
P̂j = ∑i Jijai and P̂†

j = ∑i Jija
†
i after passing the middle electronic

site. The details are provided in the Appendix in our former work,17

which is believed to be near-optimal for the two models (from the
results shown below, it is optimal except at the first bond for the
Holstein model).

For the spin–boson model shown in Fig. 2(a), MO is a constant
independent of system size because Ŵ[1 : i] = {Ĥ[1 : i], σ̂z , Î},
where Ĥ[1:i] is the complete Hamiltonian from site 1 to i. The

new automatic algorithm gives exactly the same result as the hand-
crafted one. For the Holstein model shown in Figs. 2(b) and 2(c),
MO is independent of the number of the electronic site when the
electronic coupling is one-dimensional nearest-neighbor coupling,
while it is linearly dependent on the number of the electronic site
if the long-range hopping is allowed. The new automatic algorithm
gives the same results as the hand-crafted ones, except at the first
bond, where the new algorithm gives one less bond dimension.
This minor difference comes from that the hand-crafted strategy
gives Ŵ[1] = {ε1a†

1a1, a†
1a1, a†

1 , a1, Î}, while the automatic algo-
rithm gives Ŵ[1] = {a†

1a1, a†
1 , a1, Î} and the local energy of the

first site ε1a†
1a is considered in Ŵ[2]0,0 = ε1Î. Although this small

improvement will not make a noticeable difference on the actual
computational cost, it is clear to demonstrate that since the new
algorithm is globally optimal, it could find out the redundancy,
which will be neglected sometimes with the common hand-crafted
strategy.

B. Ab initio electronic Hamiltonian
The second Hamiltonian considered is the ab initio electronic

Hamiltonian in which up to 4 sites interact with each other. Thus, it
is much more complicated than the spin–boson model and Holstein
model. With spin-orbitals, the Hamiltonian is written as

Ĥel =
N

∑
p,q=1

hpqa†
paq +

1
2

N

∑
p,q,r,s=1

vpqrsa†
pa

†
qaras

=
N

∑
p,q=1

hpqa†
paq +

N

∑
p<q,r<s

gpqrsa†
pa

†
qaras, (12)

where the two-electron integral vpqrs is (ps|qr) in chemist’s nota-
tion. The second equality takes advantage of the symmetry in vpqrs
(gpqrs = vpqrs − vqprs = vpqrs − vpqsr).

First, we introduce the optimal hand-crafted strategy to con-
struct the MPO of the ab initio electronic Hamiltonian. For more
implementation details, refer to Ref. 49. For convenience, Ĥel is
divided into three components. The first part is Ĥ1 = ĤL + ĤR
in which ĤL and ĤR are the full Hamiltonian of the orbitals in
the L-block and R-block, respectively. In fact, ĤL and ĤR could be

FIG. 2. The bond dimension MO vs the bond index in (a) the spin–boson model with 100 discrete vibrational modes. (b) The Holstein model of 20 electronic sites with only
one-dimensional electronic coupling and each electronic site has two vibrational modes. (c) The same as in (b), except with arbitrary long-range electronic couplings. The
reference results (blue line) are based on the hand-crafted complementary operator strategy provided in our former work.17
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regarded as the complementary operators of identity operator ÎR and
ÎL in the R-block and L-block, reducing O(N4

) normal operators to
one complementary operator. Apparently, Ĥ1 gives MO ,1 = 2 at each
bond. The second part with two fermionic creation or annihilation
(elementary) operators in each block is written as

Ĥ2 = ∑
p<q,r<s

−gpLqRrLsR(a
†
pLarL)(a

†
qRasR) + gpLqLrRsR(a

†
pLa

†
qL)(arRasR)

+ gpRqRrLsL(arLasL)(a
†
pRa

†
qR). (13)

The optimal strategy to design the complementary operator depends
on the number of orbitals denoted as nL and nR in each block.
For instance, if nL > nR, the complementary operators of the first
term in Eq. (13) are P̂qs = ∑pr −gpLqRrLsR(a

†
pLarL), which have n2

R
terms in total. Therefore, the ideally minimal bond dimension is
MO,2 = min(n2

L,n2
R) + 2 ⋅ min(nL(nL − 1)/2,nR(nR − 1)/2). The

third part with one creation or annihilation operator in one block
and three in the other is commonly written as

Ĥ3 =∑
p
a†
pL
⎛

⎝
∑
q

1
2
hpLqRaqR +∑

qrs
gpLqRrRsRa

†
qRarRasR

⎞

⎠

+ ∑
r
arL
⎛

⎝
∑
s
−

1
2
hsRrLa

†
sR +∑

pqs
gpRqRrLsRa

†
pRa

†
qRasR
⎞

⎠

+ ∑
q

⎛

⎝
∑
p
−

1
2
hqRpLapL +∑

psr
gpLqRrLsLa

†
pLarLasL

⎞

⎠
a†
qR

+ ∑
s

⎛

⎝
∑
r

1
2
hrLsRa

†
rL +∑

pqr
gpLqLrLsRa

†
pLa

†
qLarL
⎞

⎠
asR . (14)

The terms in the parentheses are the complementary operators,
which should be first summed up. This kind of complementary oper-
ator is adopted to construct the MPO of the ab initio electronic
Hamiltonian because it greatly reduces MO ,3 from O(N3

) to O(N).
However, it is only near-optimal because near the left boundary of
the chain, there are more 1-index operators in the R-block than 3-
index operators in the L-block. Thus, the optimal way to construct
the complementary operator at this boundary is

Ĥ3 =∑
p
a†
pL
⎛

⎝
∑
q
hpLqRaqR +∑

qrs
gpLqRrRsRa

†
qRarRasR

⎞

⎠

+ ∑
r
arL
⎛

⎝
∑
s
−hsRrLa

†
sR +∑

pqs
gpRqRrLsRa

†
pRa

†
qRasR
⎞

⎠

+ ∑
prs

a†
pLarLasL

⎛

⎝
∑
q
gpLqRrLsLa

†
qR
⎞

⎠

+ ∑
pqr

a†
pLa

†
qLarL(∑

s
gpLqLrLsRasR). (15)

The case is the same near the right boundary of the chain. There-
fore, the minimal MO ,3 equals 2 ⋅ min(n2

L(nL − 1)/2,nR) + 2 ⋅
min(nL,n2

R(nR − 1)/2). It is clear that MO ,2 contributes most to the
total MO = MO ,1 + MO ,2 + MO ,3, and thus, this improvement of MO ,3
is rarely considered. However, it could be considered automatically

with our new algorithm. Adding up the contributions of the three
components, the largest bond dimension always lies in the middle of
the chain, which is MO,max = 2(N2 )

2 + 3(N2 ) + 2.
To consider the antisymmetry of fermions in the algorithm

described in Sec. II B, the Jordan–Wigner transformation62 for the
elementary creation and annihilation operators is introduced,6,33

∣vacuum⟩ = ∣α⟩, (16)

∣occupied⟩ = ∣β⟩, (17)

a†
j =

j−1

∏
i=1

σz[i] × σ−[j], (18)

aj =
j−1

∏
i=1

σz[i] × σ+[j]. (19)

Figure 3(a) shows the maximal MO of systems with 10–70 spin-
orbitals, and Fig. 3(b) shows MO at each bond of a system with 50

FIG. 3. (a) The maximal MPO bond dimension MO ,max of the ab initio elec-
tronic Hamiltonian with different numbers of spin-orbitals. The blue curve MO,max
= 2( N2 )

2 + 3( N2 ) + 2 is the optimal result from the hand-crafted complementary
operator strategy (see text for details). The red circles are the results obtained from
the new automatic MPO construction algorithm. (b) The MPO bond dimension MO
at each bond of the ab initio electronic Hamiltonian of a 50 spin-orbital system.
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FIG. 4. The error of the ground state energy of H2O with 6-31g basis calculated
by the MPO based DMRG algorithm with different MPS bond dimensions MS. The
two-site algorithm is adopted to optimize the ground state MPS. The reference
is the FCI energy EFCI = −76.119 697 04Eh. The MPO is generated by the new
automatic MPO construction algorithm.

spin-orbitals. The correctness of the MPOs generated by the auto-
matic algorithm has been verified by checking the residue ∥MPO1
−MPO2∥ = 0 with respect to the MPOs developed by Li and Chan in
Ref. 6 and implemented in package QCMPO.63 MO at each bond and
MO ,max (red asterisks) of the automatically generated MPO exactly
match what the optimally hand-crafted strategy described above
would give (blue circles), except that at the first bond, the automatic
algorithm gives MO = 4 (Ŵ[1] = [σ−σ+, σzσ−, σzσ+, Î]), while the
hand-crafted strategy gives MO = 5 (Ŵ[1] = [h11σ−σ+, σ−σ+, σzσ−,
σzσ+, Î]). The reason is the same as that in the case of Holstein mod-
els. In addition, in Fig. 3(b), MO vs the bond index is symmetric as
expected and the kink at the bond index 5 and 45 is due to the switch
of the complementary operators from Eq. (15) to Eq. (14), indicating
that the new algorithm could really find out the optimal solution.

We also calculate the ground state energy of the water molecule
with 6-31g basis by the MPO-based DMRG algorithm. The struc-
ture of H2O in the Cartesian coordinates is O(0, 0, −0.064 448 4),
H(±0.749 915 1, 0, 0.511 491 3) in Angstroms. The electron integral
and the reference full configuration interaction (FCI) result are cal-
culated by PySCF.64 The DMRG results with different MS are shown
in Fig. 4. The error of ground state energy with MS = 800 is less than
1 × 10−6Eh, which verifies the correctness of the MPO generated by
the automatic algorithm.

C. Anharmonic vibrational Hamiltonian
The third example considered is the anharmonic vibrational

Hamiltonian. There are two difficulties to solve the vibrational
problems. One is how to calculate the matrix elements of high-
dimensional PES, as introduced in Sec. I. The other is how to cal-
culate the eigenstates or simulate the dynamics. Both of these two
difficulties stem from the curse of dimensionality. To overcome
the second difficulty, there have been a series of methods at dif-
ferent hierarchical levels, including vibrational self-consistent field
(VSCF), vibrational perturbation theory (VPT), vibrational config-
uration interaction (VCI), vibrational coupled cluster (VCC), and
multi-reference approaches.38,65–69 (ML-)MCTDH combined with
the improved relaxation algorithm70 is another efficient method to

obtain the eigenstates of the vibrational Hamiltonian. Recently, the
DMRG has also been proposed to solve the anharmonic vibrational
problem.10–12 Herein, we use an approximate form of the Watson
Hamiltonian in which only the second-order Coriolis terms are
included,11,71,72

Ĥ = Ĥvib + ĤCor, (20)

Ĥvib = −
1
2∑i

∂2

∂q2
i

+ V({q}), (21)

ĤCor = −∑
α
Bα∑

i<j
∑
k<l

ζαij ζ
α
kl(qi

∂

∂qj
− qj

∂

∂qi
)

×(qk
∂

∂ql
− ql

∂

∂qk
). (22)

Here, Bα are the rotational constants and ζαij are the Coriolis coupling
constants. In this numerical example, V({q}) is approximated as a
sixth order Taylor expansion around the equilibrium geometry,

V({q}) =V0 +
1
2∑i

ω2
i q

2
i +

1
3!∑ijk

Fijkqiqjqk

+
1
4!∑ijkl

Fijklqiqjqkql +
1
5! ∑ijklm

Fijklmqiqjqkqlqm

+
1
6! ∑ijklmn

Fijklmnqiqjqkqlqmqn. (23)

It is a nontrivial task to construct a compact MPO of the opera-
tor in Eq. (23) because up to six sites are coupled together in a
DMRG chain, more complicated than the ab initio electronic Hamil-
tonian. We note that two methods have been used to construct the
MPO of this type of operator. In Ref. 10, a compact MPO is con-
structed by SVD compression, and in Ref. 11, a symbolic MPO is
constructed in the second quantization formalism as the electronic
Hamiltonian.33 We will use the automatic MPO construction algo-
rithm to demonstrate its effectiveness and generality. Although we
use a PES expanded as a Taylor series in this example, it is worth
mentioning that the algorithm is suitable to any PES expressed as
an analytical SOP form. The molecule we choose is the widely stud-
ied C2H4 molecule.11,12,65,72,73 The PES of C2H4 used here is a sextic
force field as Eq. (23) from the PyPES library,73 which is an adap-
tation of the PES constructed at the coupled-cluster single double
and peturbative triple [CCSD(T)] level with quadruple-zeta basis
in internal coordinates.74 The constant V0 is set to 0 for simplic-
ity. Since C2H4 at equilibrium geometry has D2h point group sym-
metry, there are only 2644 nonzero potential energy terms in the
Hamiltonian otherwise it would be 18 485 terms. Figure 5 shows the
MPO bond dimension at each bond of Ĥvib of C2H4 with or with-
out considering the point group symmetry. The 12 vibrational DoFs
within the DMRG chain are arranged according to their harmonic
frequencies ωi. With point group symmetry, the largest MPO bond
dimension is reduced from 112 to 77, which will reduce the compu-
tational cost spent in the DMRG static state or the time evolution
calculations. Because the construction is automatic, the gain by uti-
lizing symmetry to reduce the size of MPO is for free. Therefore, for
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FIG. 5. The MPO bond dimension MO vs bond index of C2H4 described by a sextic
force field with or without considering D2h point group symmetry.

the Hamiltonian with negligible terms, it would be efficient to use
the current algorithm to construct the MPO after pre-screening the
prefactors.

We use the linear response DMRG method under the Tamm–
Dancoff approximation (DMRG-TDA) to calculate the vibrational
excited states.75,76 Compared to the other DMRG based algorithms

for the high-lying excited states, such as DMRG with the shift-
and-invert scheme,12,77,78 DMRG with the folded operator,12 and
DMRG with projector and energy-shift,11,26 the DMRG-TDA has
the advantage that all the required eigenstates could be calculated
in a single calculation and there is no need to track a specific state
during the DMRG optimization procedure in order to avoid the
root flipping problem.12,79 To the best of our knowledge, it is the
first time that the DMRG-TDA is applied to the vibrational corre-
lation problem. In our calculation, the maximal occupation number
(quanta) of each mode is limited to 6. The ground state is calcu-
lated by the state-averaged DMRG (SA-DMRG) for the lowest 9
states to make the renormalized basis more balanced for not only the
ground state itself but also the excited states. Based on this ground
state, we use the DMRG-TDA to calculate all the eigenstates below
4000 cm−1. In Table I, we list the zero point energy, all 12 fundamen-
tal bands and the combination bands below 4000 cm−1 composed
of a high-frequency C–H stretch and a low-frequency bend motion.
The energy levels with or without considering the Coriolis coupling
are both listed. Each DMRG-TDA wavefunction is compressed to
a rank one Hartree product state to assign the main configuration
in the correlated wavefunction. The label of each normal mode fol-
lows Ref. 74 and is listed in Table S1 of the supplementary material.
For comparison, the VCI(8) results calculated by the PyVCI pack-
age72 and the variational results reported in the literature74 are also

TABLE I. The zero point energy (ZPE), 12 fundamental frequencies and 8 stretch–bend combination frequencies below 4000 cm−1 of C2H4 calculated by the DMRG-TDA.

Without Coriolis term With Coriolis term

DMRG-TDA DMRG-TDA

Assignment Harmonic MS = 50 MS = 100 MS = 200 VCI(8)a MS = 50 MS = 100 MS = 200 VCI(8)a Reference 74

ZPE 11 164.45 11 011.62 11 011.62 11 011.62 11 011.63 11 017.10 11 016.95 11 016.95 11 016.96 11 014.91
v10 824.97 820.25 820.01 819.99 820.11 823.69 823.55 823.53 823.66 822.42
v8 950.19 926.68 926.35 926.33 926.45 935.43 935.21 935.18 935.31 934.29
v7 966.39 942.03 941.68 941.65 941.78 950.89 950.64 950.61 950.74 949.51
v4 1 050.81 1 017.81 1 017.48 1 017.45 1 017.56 1 026.05 1 025.83 1 025.80 1 025.92 1 024.94
v6 1 246.76 1 222.41 1 222.17 1 222.15 1 222.23 1 224.91 1 224.81 1 224.79 1 224.87 1 225.41
v3 1 369.38 1 342.26 1 341.97 1 341.95 1 342.01 1 342.94 1 342.80 1 342.79 1 342.85 1 342.46
v12 1 478.48 1 438.61 1 438.33 1 438.31 1 438.39 1 441.90 1 441.77 1 441.76 1 441.84 1 441.11
v2 1 672.57 1 623.23 1 622.93 1 622.90 1 622.97 1 625.51 1 625.37 1 625.34 1 625.41 1 624.43
v11 3 140.91 2 978.69 2 978.09 2 978.01 2 978.20 2 985.73 2 985.35 2 985.28 2 985.48 2 985.38
v1 3 156.84 3 017.93 3 017.17 3 017.06 3 017.05 3 020.17 3 019.20 3 019.07 3 019.15 3 018.99
v5 3 222.89 3 072.75 3 071.86 3 071.20 3 071.51 3 079.63 3 079.27 3 079.17 3 079.36 3 079.86
v9 3 248.71 3 092.41 3 091.58 3 091.39 3 091.98 3 101.40 3 101.14 3 101.07 3 101.26 3 101.69
v11 + v10 3 792.91 3 790.82 3 790.53 3 791.73 3 805.76 3 804.14 3 803.85 3 805.05 3 803.51
v1 + v10 3 831.52 3 828.88 3 828.57 3 829.80 3 836.10 3 834.30 3 834.02 3 835.17 3 833.27
v5 + v10 3 889.77 3 886.71 3 885.77 3 887.13 3 899.93 3 897.17 3 896.77 3 897.92
v11 + v8 3 902.58 3 897.06 3 897.02 3 897.86 3 926.18 3 914.00 3 914.03 3 914.74 3 912.73
v9 + v10 3 910.79 3 909.17 3 908.85 3 910.21 3 922.38 3 921.02 3 920.79 3 921.83 3 921.08
v11 + v7 3 917.10 3 911.44 3 911.39 3 912.24 3 936.35 3 929.24 3 929.22 3 930.05 3 927.84
v1 + v8 3 936.71 3 937.59 3 936.20 3 931.12 3 952.56 3 943.27 3 942.03 3 944.20 3 946.68
v5 + v8 3 974.11 3 969.67 3 970.02 3 970.30 4 006.88 4 000.06 4 000.43 4 000.66

aThe VCI(8) results are calculated by package PyVCI from Refs. 72 and 73. VCI(8) means that up to 8 quanta could be excited in the CI calculation∑N
i ni ≤ 8 (ni is the number of

quanta of the ith mode).
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listed. Table I shows that the DMRG-TDA results have already
converged within 1 cm−1 with only MS = 50 for the fundamental
bands. For the combination bands listed, the convergence within
1 cm−1 could be reached with MS = 100, except the energy level
v1 + v8 (<1.5 cm−1). One of the reasons for this difference is that
the DMRG-TDA is a single site excitation method on a correlated
ground state reference. Thus, it is more efficient to target the fun-
damental bands than the combination bands. More sophisticated
DMRG-CISD method,75 in which the second-order tangent space of
the MPS is also included, could further improve the accuracy of the
combination bands. All the energy levels below 4000 cm−1 are listed
in Table S2 of the supplementary material. The root mean square
deviation of the DMRG-TDA results (MS = 200) including the effect
of Coriolis coupling compared to the available theoretical data in
Ref. 74 is 0.74 cm−1 for the fundamental bands and 9.12 cm−1 for
all bands below 4000 cm−1. We expect that if the same form of PES
is used, the deviation would be smaller. Although we choose a small
molecule C2H4 as a numerical example here, the VDMRG is suitable
for much larger molecules, such as that in Ref. 11, a peptide molecule
is calculated.

Finally, we briefly discuss the computational scaling when using
the MPO based DMRG algorithms. When dealing with the ab initio
electronic Hamiltonian, it has been pointed out that directly treating
the MPO as a dense matrix will result in an incorrect scaling O(N5

)

compared to O(N4
) of the original DMRG algorithm in which only

the renormalized operator matrix is retained.33,49 The same prob-
lem will arise for the vibrational Hamiltonian with the sextic force
field. The MO ,max of Ĥvib with the number of vibrational modes
is shown in Fig. 6 (blue curve). For Ĥvib, MO,max =

1
48N

3 + 3
8N

2

+ 5
3N + 2 when N is even. The leading term O(N3

) comes from the
3-index normal operators in each block, and the prefactor is (N/23 ).
When calculating the expectation value ⟨Ψ|Ĥ|Ψ⟩ or optimizing the
ground state, the cost spent in each blocking process is O(N6

)

because the size of each local matrix in the MPO is O(N3
)×O(N3

).
Hence, the total cost after each sweep is O(N7

). However, with the
original DMRG algorithm, the bottleneck in the blocking process

FIG. 6. The maximal MPO bond dimension MO ,max of the vibrational Hamiltonian
Ĥvib in Eq. (21) (blue circles) and Ĥi in Eq. (24) (red stars) vs the number of modes.
The blue curve 1

48N
3 + 3

8N
2 + 5

3N+2 exactly fits the MO ,max of Ĥvib. The two black

dashed curves 1
4N

2 and 1
2N

2 indicate that the scaling of MO ,max of Ĥi is O(N2
)

and the prefactor is between 1
4 and 1

2 .

is to contract the 3-index normal operators qiqjqk in the L-block
(R-block) and 1-index operator ql in the center site to the com-
plementary operator of qmqn in the R-block (L-block), which is
P̂mn = ∑ijk Fijklmnqiqjqkql, with a local computational scaling O(N5

)

and in total O(N6
) in one sweep. To recover the correct scaling

in the MPO based algorithm, two approaches have been proposed.
One is to fully employ the sparsity of MPO when contracting ten-
sors.33 The other method is to split the total Ĥvib into a sum of Ĥi,6,49

Ĥvib = ∑
N
i=1 Ĥi, where

Ĥi = −
1
2
∂2

∂q2
i

+ V0/N +
1
2
ω2
i q

2
i +

1
3!∑jk

Fijkqiqjqk

+
1
4!∑jkl

Fijklqiqjqkql +
1
5! ∑jklm

Fijklmqiqjqkqlqm

+
1
6! ∑jklmn

Fijklmnqiqjqkqlqmqn. (24)

For Ĥi with index i fixed, the maximal 5-free-index opera-
tor will give an MPO with MO,max = O(N2

). The red curve in
Fig. 6 shows MO ,max of Ĥi with the number of modes. The prefac-
tor of the leading term is between 1

4 and 1
2 . If all the N sub-MPOs

are added up according to Eq. (7), the total MPO of Ĥvib will be
recovered with the same scaling of the bond dimension O(N3

),
but with a larger prefactor. The advantage to introduce Ĥi is that
the contraction of Ĥ could be first divided into contractions of Ĥi
and then are summed up together. Even though the MPO of Ĥi is
treated as a dense matrix, the computational scaling in the block-
ing process is O(N4

) for each of them, and the total N MPOs will
result in O(N5

). Therefore, this “sum of MPO” algorithm not only
recovers the correct computational scaling but also is easy to be
parallelized.

IV. CONCLUSION AND OUTLOOK
In this work, we propose a new generic algorithm for the con-

struction of the matrix product operator of any operator with an
analytical sum-of-products form based on the bipartite graph the-
ory. The most important feature of the algorithm is that it could
translate the operator expression to the MPO representation auto-
matically. Therefore, it is very useful for the current (TD-)DMRG
methods to be easily extended to more problems described by dif-
ferent Hamiltonians. The idea of the new algorithm is to map the
complementary operator selection problem to a minimum vertex
cover problem in a bipartite graph, which could be elegantly solved
by several well-established algorithms to get a locally optimal solu-
tion. We also prove that the constructed MPO is globally optimal.
In addition, the new algorithm is symbolic and the sparsity of the
Hamiltonian is fully preserved, which could be utilized to reduce the
computational cost when contracting the tensors. We demonstrate
the generality of the new algorithm by constructing MPOs ranging
from the simple spin–boson model and the Holstein model to the
more complicated ab initio electronic Hamiltonian and the vibra-
tional Hamiltonian described by a sextic force field. In all of the
examples, the new algorithm performs well in that it could find out
the small redundancy in the near-optimal hand-crafted MPO, and
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it could take advantage of the symmetry to reduce the dimension
of MPO. Finally, one potential use-case of the presented algorithm
not covered in the former examples is that if the coordinates sys-
tem in the vibrational problem is curvilinear coordinates instead
of normal mode rectilinear coordinates, the nuclear kinetic energy
operators could be very complicated. The polyspherical approach
developed by Gatti and co-workers80,81 provides a general and ana-
lytical form of the kinetic energy operators expressed in terms of
curvilinear coordinates, which often have thousands of summands
and are very sensitive to numerical errors due to singularities. We
expect that the symbolic feature of the current algorithm may be use-
ful to contract the kinetic energy operators in these cases to reduce
the computational cost when calculating the matrix elements.

SUPPLEMENTARY MATERIAL

See the supplementary material for the label of each normal
mode of C2H4 and the energy levels below 4000 cm−1 calculated by
the DMRG-TDA.
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APPENDIX: PROOF OF THE GLOBAL OPTIMALITY
We will prove that sweeping from left to right with the proce-

dure described in Sec. II B will not change the rank of the adjacency
matrix at the same boundary. Starting from the left at the bound-
ary between sites 1 and 2, after the first loop through steps 1–3, the
coefficient matrix γ1 is factorized as

γ1 = γz1 ,z2⋯zN =∑
w1

W[1]z1 ,w1C[2 : N]w1 ,z2z3⋯zN . (A1)

The matrix W[1]z1 ,w1 is the transformation matrix given in step 3.
According to Lovász’s theorem, the dimension of w1, |w1|, is equal
to r1. Equation (A1) is nothing but a special rank decomposition of
matrix γ1. Hence, bothW[1] (columns are linearly independent) and
C[2:N] (rows are linearly independent) have rank r1. Thus,

C[2 : N]w1 ,z2z3⋯zN = (W[1]
TW[1])−1W[1]Tγ1 = X[1]γ1. (A2)

We will show that the unfolding matrices of C[2:N], which are
C[2 : N]2 = C[2 : N]w1z2 ,z3⋯zN , C[2 : N]3 = C[2 : N]w1z2z3 ,z4...zN ,⋯,
and C[2 : N]N−1 = C[2 : N]w1z2⋯zN−1 ,zN all have rank(C[2:N]i) = ri.
Since γi has rank ri, a rank decomposition exists

γi = γz1⋯zi ,zi+1⋯zN =
ri
∑
β=1

Hz1⋯zi ,βFβ,zi+1⋯zN . (A3)

Thus,

C[2 : N]i = C[2 : N]w1z2⋯zi ,zi+1⋯zN

=∑
z1

X[1]w1z1γz1z2⋯zi ,zi+1⋯zN

=∑
z1

X[1]w1z1

⎛

⎝

ri
∑
β=1

Hz1⋯zi ,βFβ,zi+1⋯zN
⎞

⎠

=

ri
∑
β=1

⎛

⎝
∑
z1

X[1]w1z1Hz1⋯zi ,β
⎞

⎠
Fβ,zi+1⋯zN

=

ri
∑
β=1

Mw1z2⋯zi ,βFβ,zi+1⋯zN . (A4)

Therefore, rank(C[2:N]i) ≤ ri. On the other hand, if rank(C[2:N]i)
< ri,

γi =∑
w1

W[1]z1 ,w1C[2 : N]w1 ,z2z3⋯zN

=∑
w1

W[1]z1 ,w1

⎛

⎝

rank(C[2:N]i)

∑
β=1

M′w1z2⋯zi ,βF
′

β,zi+1⋯zN
⎞

⎠

=

rank(C[2:N]i)

∑
β=1

⎛

⎝
∑
w1

W[1]z1 ,w1M
′

w1z2⋯zi ,β
⎞

⎠
F′β,zi+1⋯zN

⎞

⎠

=

rank(C[2:N]i)

∑
β=1

H′z1⋯zi ,βF
′

β,zi+1⋯zN . (A5)

The decomposition is contradictory to that the rank of γi is ri. Thus,
rank(C[2:N]i) = ri. The symbolic bipartite adjacency matrix between
sites 2 and 3 is C[2:N]2, which has rank r2. C[2:N]2 could be further
symbolically decomposed by finding the maximum matching and
then the transformation matrix in step 3,

C[2 : N]2 =
r2

∑
w2=1

W[2]w1z2 ,w2C[3 : N]w2 ,z3⋯zN . (A6)

The process can be continued by induction. This whole proof is very
similar to Theorem 2.1 of Ref. 56. The difference is that the equal-
ity rank(C[i:N]j) = rj (j ≥ i) always holds. The proof above could be
intuitively understood from the fact that the rank of the coefficient
matrix between two sub-systems will not change after sequential
linear combinations of the basis in each sub-system as long as the
new basis is linearly independent. Therefore, after sweeping from
the left to the boundary between sites i and i + 1, since the rank of
the bipartite adjacency matrix C[i:N]i is ri, the minimal number of
retained operators is the same as the case that all normal operators
are retained without any combination (complementary operators).
As a result, the locally optimal solution is also globally optimal.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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