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A general charge transport picture for organic
semiconductors with nonlocal electron-phonon
couplings
Weitang Li 1, Jiajun Ren1 & Zhigang Shuai 1✉

The nonlocal electron-phonon couplings in organic semiconductors responsible for the

fluctuation of intermolecular transfer integrals has been the center of interest recently.

Several irreconcilable scenarios coexist for the description of the nonlocal electron-phonon

coupling, such as phonon-assisted transport, transient localization, and band-like transport.

Through a nearly exact numerical study for the carrier mobility of the Holstein-Peierls model

using the matrix product states approach, we locate the phonon-assisted transport, transient

localization and band-like regimes as a function of the transfer integral (V) and the nonlocal

electron-phonon couplings (ΔV), and their distinct transport behaviors are analyzed by

carrier mobility, mean free path, optical conductivity and one-particle spectral function. We

also identify an “intermediate regime” where none of the established pictures applies, and the

generally perceived hopping regime is found to be at a very limited end in the proposed

regime paradigm.
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The last two decades have witnessed the rapid development of
high-mobility crystalline organic semiconductors1–3. The first
proposition of using Marcus’ semiclassical hopping model

coupled with density functional theory to design high mobility
molecules has been very successful and popular4. It can be regarded
as the strong local electron–phonon coupling (EPC) limit, which was
later improved by considering quantum nuclear effect and delocali-
zation effect5,6, through which, isotope effect is found to be always
negative and the dynamic disorder does not play appreciable role
with some experimental supports7–10. However, such local EPC
picture is challenged by the recently established transient localization
(TL) model which invokes nonlocal EPC11–14. In due course, the
molecular design principles derived from TL such as suppressing
intermolecular vibration, which are quite different from the local
picture, have proved successful in a number of experiments15,16. The
applicability of the TL picture, nevertheless, is restricted to the regime
of moderate transfer integral (electronic coupling) V and strong
nonlocal EPC. Since EPC is a complicated many-body problem, it is
highly desirable to present a general transport picture taking both
local and nonlocal EPC into considerations in a rigorous way, instead
of uncontrolled approximations.

Many recent efforts have been devoted to developing approx-
imate methods that are able to portray a broader parameter space,
including the band-like (BL) conduction regime17,18. Besides,
unlike in the case of Holstein model in which it is beyond doubt
that local EPC represents an obstacle for carrier diffusion19–21,
how nonlocal EPC affects mobility does not have a definitive
answer and the interplay between the local and nonlocal EPC is
unclear. Early theoretical treatments for carrier mobility in crys-
talline organic semiconductors such as the Munn-Silbey approach
and the polaron transformation often reach the conclusion that
the nonlocal EPC leads to phonon-assisted (PA) transport and
enhances mobility22–24, in sheer contrast with the basic starting
point of the TL scenario. The findings of several numerical studies
on the carrier mobility of organic semiconductors also contradict
with the TL theory8,25. In principle, PA, TL, and BL are all pos-
sible mechanisms for charge transport with nonlocal EPC, valid at
their respective parameter regimes, yet a universal theoretical
treatment for the role of nonlocal EPC is not available due to the
complex many-body electron–phonon interaction.

In this work, we present a nearly exact study of the charge
transport mechanism in the Holstein–Peierls model using the
time-dependent finite temperature matrix product state (MPS)
formalism26,27. By studying EPC effect on the carrier mobility,
mean free path, optical conductivity, and one-particle spectral
function, we have located the PA, TL, and BL regimes simulta-
neously on the transfer integral – nonlocal EPC strength plane.
We have also identified an intermediate regime where none of the
existing pictures is truly applicable, as a generalization of the
hopping-band crossover in the Holstein model.

Results
System Hamiltonian and Kubo Formula. We take the following
one-dimensional Holstien–Peierls model with nearest-neighbor
interaction and periodic boundary condition:

Ĥ ¼ Ĥe þ Ĥph þ Ĥe�ph

Ĥe ¼ �V ∑
n
ðcynþ1cn þ cyncnþ1Þ

Ĥph ¼ ∑
n;m

ωmb
y
n;mbn;m þ∑

n
ωθb

y
n;θbn;θ

Ĥe�ph ¼ ∑
n;m

gm;Iωmðbyn;m þ bn;mÞcyncn
þ∑

n
gθ;IIωθðbyn;θ þ bn;θÞðcynþ1cn þ cyncnþ1Þ

ð1Þ

where c† (c) and b† (b) are the creation (annihilation) operator for
electron and phonon respectively, and V is the intermolecular
transfer integral. The electronic motion is limited to single-
electron manifold. ωm and gm,I are the frequency and the
dimensionless EPC constant of the mth intramolecular vibration
mode. ωθ and gθ,II are the intermolecular vibration counterparts. ℏ
is set to 1. The thermal fluctuation ΔV is related to intermolecular
coupling constant gθ,II by28:

ΔV ¼ gθ;IIωθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth

ωθ

2kBT

r
ð2Þ

The one-dimensional model in Eq. (1) is an approximation to
realistic organic semiconductors, which typically adopt two-
dimensional transport network8,13,29. In the Supplementary Fig. 4
we demonstrate that this approximation is valid for anisotropic
materials by comparing the simulated one-particle spectral
function with experimental angle resolved ultraviolet photo-
emission spectra (ARUPS)30, and at the end of the section we go
beyond the one-dimensional model to discuss the isotropy effect
on the different transport regimes.

In order to elucidate how nonlocal EPC affects charge
transport at different transport regimes we focus on the role of
transfer integral V and nonlocal EPC constant gθ,II (or
equivalently ΔV at a given T). Other parameters are fixed
throughout this paper unless otherwise specified with values
drawn from representative organic semiconductors. In organic
semiconductors, the most common values of V and ΔV range
from 10meV to 150 meV and from 10meV to 60 meV,
respectively31–33. The intramolecular vibration frequency ωm

and local EPC constant gm,I are taken from our previous DFT
calculations for rubrene and the total 3N− 6 normal vibration
modes are reduced to four effective modes6,21, namely ωm= 26
meV, 124 meV, 167 meV, and 198 meV, with the corresponding
dimensionless gm,I 0.83, 0.26, 0.34, and 0.37, respectively. The
intermolecular vibration frequency ωθ is set to be 50 cm−1 (6.2
meV) as commonly adopted in literature13,17,34. The system is
translational-invariant and we do not consider the effect of both
diagonal and off-diagonal static disorder here35.

The carrier mobility is obtained via the Kubo formula36:

μ ¼ 1
kBTe0

Z 1

0
ĵðtÞ̂jð0Þ� �

dt ¼ 1
kBTe0

Z 1

0
CðtÞdt ð3Þ

where for the Holstein–Peierls Hamiltonian in Eq. (1) the current
operator ĵ takes the form:

ĵ ¼ e0R
i
∑
n

�V þ gθ;IIωθðbyn;θ þ bn;θÞ
h i

ðcynþ1cn � cyncnþ1Þ ð4Þ

Here R is the intermolecular distance and is set to 7.2Å as in the
case of rubrene crystal. Although we have treated the model as a
closed system, in our study the recurrence problem is not severe
and C(t) in general rapidly decays to nearly zero, except when
both V and ΔV are small. In such cases we resort to a more strict
model with 10 modes in total for the convergence of C(t). Lying at
the heart of our calculation is the evaluation of the
current–current correlation function CðtÞ ¼ ĵðtÞ̂jð0Þ� �

, which is
achieved by the time-dependent MPS formalism21,26,27. In most
of our simulations, the number of molecules in the periodic one-
dimensional chain is 21 and the virtual bond dimension is 80.
More details on the model with 9 intramolecular modes as well as
numerical convergence check on system size and MPS parameters
are included in Supplementary Table 1, Supplementary Fig. 1, and
Supplementary Fig. 2.

Carrier mobility. Firstly, we analyze the role of local and non-
local EPC on different parameter regimes by comparing the
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mobility calculated based on the Holstein–Peierls model (μH-P)
with the mobility calculated based on pure Holstein model (μH)
and pure Peierls model (μP) at 300 K. We have also included the
mobility derived from Matthiessen’s rule (1/μM= 1/μH+ 1/μP),
presumably valid in the BL regime, because in the BL regime both
local and nonlocal EPC can be considered as independent scat-
tering sources and the total scattering rate of the wave-like elec-
tronic motion is the sum of both scattering rates. The overall
results are shown in Fig. 1. When V= 5 meV, μH-P is generally
higher than μH, which implies that nonlocal EPC is beneficial to
charge transport. This is considered to be a signature of the PA
picture. However, this behavior quickly vanishes as V increases
from 5meV to 20 meV. At the intermediate range of V, e.g. from
45meV to 120 meV, μH-P could be higher than μP for larger ΔV.
That local EPC could enhance instead of reduce mobility is quite
counter-intuitive. Such unusual behavior can be best understood
by TL picture, in which the quantum coherent interference
responsible for Anderson localization can be damaged or
destroyed by local EPC as the dephasing noise. The mechanism is
studied in detail by means of open system dynamics for systems
with static disorder37,38. In addition, the “band width narrowing”
caused by local EPC could allow the carrier to thermally access
much delocalized states17. These lead to the local EPC enhanced
mobility. Upon further increasing V to 150 meV, the TL scenario
also becomes less significant. Instead, it is found that μM coincides
with μH-P remarkably well, serving as a piece of evidence for
band-like transport.

Mean free path and optical conductivity. Although in the BL
regime μM is expected to be a good approximation for μH-P, μM ≈
μH-P alone is not a sufficient condition for band-like transport,
and we additionally employ the Mott-Ioffe-Regel limit for the
determination of the BL regime. The carrier mean free path lmfp is
estimated as lmfp= vτ with the group velocity v and relaxation
time τ evaluated by39:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĵð0Þ̂jð0Þ� �q

=e0

τ ¼
Z 1

0

ReCðtÞ
ReCð0Þ

����
����dt:

ð5Þ

And the calculated lmfp in the (V, ΔV) plane at 300 K is shown in
Fig. 2a. The overall tendency of lmfp matches well with the carrier
mobility of the Holstein–Peierls model μH-P in Fig. 1. The region
where lmfp > R is colored with blue in Fig. 2a and it lies within the
large V, small ΔV limit, and in agreement with common per-
ception. Another possible criteria for BL conduction is the
appearance of Drude-like peak in the per carrier optical con-
ductivity:

σðωÞ
ne0

¼ 1� e�ω=kBT

ω

Z 1

0
CðtÞeiωtdt ð6Þ

which is illustrated in Fig. 2b. In the case of V= 150meV without
nonlocal EPC, a broad Drude-like peak appears near ω= 0. Upon
adding a small amount of nonlocal EPC, the Drude-like peak
becomes invisible. However, the optical conductivity is still

Fig. 1 Carrier mobility at 300 K calculated based on the Holstein–Peierls model (μH-P), Holstein model (μH), Peierls model (μP), and Matthiessen’s rule
(μM) with various transfer integral V and transfer integral fluctuation ΔV. From a to i the transfer integrals are 5, 10, 20, 30, 45, 60, 90, 120, and 150
meV respectively. Other parameters relevant to the carrier mobility such as local EPC constants are fixed with values taken from rubrene. The parameters
for the Holstein (Peierls) model is the same as that of Holstein–Peierls model except that the nonlocal (local) EPC is left out.
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significantly different from the ΔV= 60 meV cases, in which a
localization peak at ω ≈ 200 meV characteristic for the TL
regime18 is present.

Connection with semi-analytical theories. The PA regime and
the TL regime can be further confirmed by semi-analytical results.
In Fig. 2c we compare C(t)H-P of our numerical simulation with C
(t)PA of phonon-assisted charge transport theory24:

μ ¼ e0R
2

kBT

Z 1

�1
½V2 þ ðgθ;IIωmÞ2ΦθðtÞ�e�ΓðtÞdt

ΓðtÞ ¼ 2∑
m
g2m;I½1þ 2Nm �ΦmðtÞ� þ 4g2θ;II½1þ 2Nθ �ΦmðtÞ�

Φm ¼ ð1þ NmÞe�iωmt þ Nme
iωmt

Nm ¼ 1

eωm=kBT � 1
ð7Þ

The parameters are V= 5 meV and ΔV= 5 meV. For both real
and imaginary part the two curves are in excellent agreement, and
show significant increase with respect to the correlation function
with only local EPC C(t)H. Thus we can confidently conclude that
in this parameter regime the transport mechanism can be
understood as phonon-assisted transport. We note that the
derivation of Eq. (7) employs narrow-band approximation, which
is valid in the small V limit. When V= 90 meV and ΔV= 40
meV shown in Fig. 2d, the correlation function given by TL
theory with relaxation time approximation40 C(t)TL is in agree-
ment with our calculation based on pure Peierls model C(t)P. The

observation implies that in this regime the TL theory can suc-
cessfully account for the transport property of the pure Peierls
model, from which the TL theory is derived. If the Holstein
coupling is included, the correlation function C(t)H-P exhibits
significant difference from C(t)P and C(t)TL, however, the inte-
grated mobility turns out to be rather insensitive to Holstein
coupling in this regime (Fig. 1g). We note that it is possible to
integrate Holstein coupling in the transient localization theory if
the intramolecular vibration frequency is much smaller than the
transfer integral33,41, however such scheme is not employed in
this work because in most cases ωm is at the same order with V.
We believe it is suitable to ascribe the V= 90 meV and ΔV= 40
meV case as TL, because although the TL theory with relaxation
time approximation may not correctly produce the correlation
function for realistic materials with Holstein coupling, the picture
provided by the theory serves as a nice starting point for further
analysis.

Effect of local EPC strength. In order to investigate how local
EPC strength will affect the results in Fig. 1, we have further
calculated the carrier mobility of the Holstein–Peierls model with
stronger local EPC. More specifically, the values of gm,I are
multiplied by

ffiffiffi
2

p
so that the respective reorganization energies

g2m;Iωm are doubled. The results are illustrated in Fig. 3. In the
small V limit shown in Fig. 3a, the PA mechanism prevails, in
agreement with the results in Fig. 1. However, from Fig. 3b it can
be seen that with enlarged local EPC strength the PA picture
remains valid even if V becomes as large as 20 meV, in contrast to

Fig. 2 Further analysis of the transport regimes. a Carrier mean free path lmfp/R at 300 K for the Holstein-Peierls model at various transfer integral V and
transfer integral fluctuation ΔV. In the blue region (bottom right) the carrier mean free path exceeds the lattice constant R. b Per carrier optical conductivity
of the Holstein–Peierls model at various transfer integral V and transfer integral fluctuation ΔV. c, d Correlation functions obtained from our simulation with
Holstein-Peierls model C(t)H-P, pure Holstein model C(t)H and pure Peiels model C(t)P as well as the correlation function obtained from phonon-assisted
transport theory24C(t)PA and transient localization theory40C(t)TL for c V= 5meV, ΔV= 5 meV and d V= 90meV, ΔV= 40meV.
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the V= 20 meV results presented in Fig. 1, indicating the
expansion of the PA region. Accordingly, the TL region is
diminished, as can be inferred from Fig. 3c, d by noting that the
parameter space in which μH-P ≥ μP is satisfied is smaller than that
of Fig. 1. In Fig. 4 we show the carrier mean free path lmfp/R with
increased local EPC strength. When V is relatively large and ΔV is
relatively small, namely in the BL regime, lmfp/R with increased
local EPC strength is generally smaller than that of the original
local EPC strength. This observation implies that the BL region in
the (V, ΔV) plane moves toward the even larger V area (V > 150
meV). Our findings are in agreement with physical instinct
because in the large local EPC limit the hopping mechanism
dominates and Eq. (7) is a good approximation for mobility.
Another factor that might affect charge transport is the dis-
tribution of intramolecular vibration frequencies with fixed total
reorganization energy. The problem is equivalent to the isotope
effect problem and recent studies on the rubrene molecule con-
cluded negative isotope effect6,9,21.

One-particle spectral function. To further analyze the charge
transport properties in the regimes implied by Figs. 1 and 2, we
calculated the momentum resolved one-particle spectral function:

Aðk;ωÞ ¼ 1
Nπ

∑
N

mn
eikRðm�nÞ

Z 1

0
cmðtÞcynð0Þ
� �

eiωtdt ð8Þ

for nine sets of representative parameters at 300 K in Fig. 5. A
Lorentzian broadening with η= 5 meV is applied for a smooth
spectra. When V= 5 meV and ΔV= 10 meV (Fig. 5a), the
spectral function exhibits dispersionless bound states separated by
the intramolecular vibration frequencies ωm, which marks the
formation of small polaron. On the contrary, when V= 150 meV
and ΔV= 10 meV (Fig. 5c) an intense quasiparticle peak is

observed near k= 0 and the overall shape of the spectra resembles
the dispersion of free electron EðkÞ ¼ �2V cos kR. In the TL
regime represented by V= 60 meV and ΔV= 60 meV (Fig. 5e)
the signature of either small polaron or delocalized state is almost
completely smeared out. In combination with the limited carrier
mean free path in this regime, it can be deduced that the charge
carrier is localized by nonlocal EPC instead of local EPC. The
same “blurred” spectral function is observed for other sets of
typical parameters in the TL regime (Fig. 5d, f). With moderate V
and ΔV shown in Fig. 5g, the spectral function exhibits none of
the typical features described above. Namely, although the spec-
tral function does not manifest the formation of small polaron or
delocalized states, the peak intensity is still strong enough to be
discernible from the TL regimes cases (Fig. 5d–f). In the absence
of the local EPC (Fig. 5h, i), the quasiparticle peak has more
intensity, implying the disruption of quantum coherent with the
addition of local EPC. Combined with the mobility data shown in
Fig. 1, it can be inferred that in the TL regime, the effect of the
disruption is to alleviate the localization caused by nonlocal EPC,
leading to increased mobility (Fig. 5e, h), while in the BL regime,
on the contrary, the disruption scatters charge carrier and reduces
mobility (Fig. 5c, i). The horizontal peak at the center of the band
in Fig. 5h is a result of the pure nonlocal EPC in the Peierls model
and is expected to vanish upon the inclusion of infinitesimal local
EPC42.

The isotropy effect. In a number of recent works it is established
that dimensionality plays an indispensable role in the charge
transport process, especially when dynamic disorder is taken into
consideration8,13,43. To study the isotropy effect beyond the one-
dimensional model, we employ a quasi-two-dimensional ladder
Holstein–Peierls Hamiltonian:

Ĥ ¼ Ĥe þ Ĥph þ Ĥe�ph

Ĥe ¼ �V1 ∑
l¼1;2

∑
n
ðcyl;nþ1cl;n þ cyl;ncl;nþ1Þ � V2 ∑

n
ðcy0;nc1;n þ cy1;nc0;nÞ

Ĥph ¼ ∑
l;n;m

ωmb
y
l;n;mbl;n;m þ∑

l;n
ωθb

y
l;n;θbl;n;θ

Ĥe�ph ¼ ∑
l;n;m

gm;Iωmðbyl;n;m þ bl;n;mÞcyl;ncl;n

þ∑
l;n
gθ;IIωθðbyl;n;θ þ bl;n;θÞðcyl;nþ1cl;n þ cyl;ncl;nþ1Þ

ð9Þ
here V1 and V2 represent the electronic coupling at the high-
mobility direction and the low-mobility direction respectively.
The intermolecular vibration at the V2 direction is neglected for
simplicity. The setup, while still approximate compared to a full-
fledged two-dimensional model, is believed to be reasonable for
anisotropic materials (V2≪V1) and can at least partially capture
the dimensionality effect. In Fig. 6 we present the computed

Fig. 3 Carrier mobility at 300 K calculated based on the Holstein–Peierls model (μH-P), Holstein model (μH), Peierls model (μP), and Matthiessen’s rule
(μM) with enlarged local EPC at various transfer integral V and transfer integral fluctuation ΔV. From a–d the transfer integrals are 5, 20, 60, and
150meV respectively.

Fig. 4 Carrier mean free path with enlarged local EPC. Carrier mean free
path lmfp/R at 300 K for the Holstein–Peierls model with enlarged local EPC
at various transfer integral V and transfer integral fluctuation ΔV.
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correlation function C(t) and mobility μ based on the model for
several typical values of V1 and ΔV1. In the hopping limit shown
in Fig. 6a, e, it is found that carrier mobility is irrelevant to the
isotropy effect, because in this limit V2 does not affect the hop-
ping process at V1 direction. In the phonon-assisted transport
regime shown in Fig. 6b, f, μ is rather insensitive to isotropy
effect. In the band-like regime shown in Fig. 6c, g, we find that
isotropy effect tends to slightly increase mobility. Lastly, in the
transient localization regime shown in Fig. 6d, h, it is observed
that carrier mobility is susceptible to the isotropy effect. By
increasing V2 from 0 to 0.2V1, the mobility increases by ~40%.
Such increase may appear difficult to understand as C(t) in
Fig. 6d does not seem to vary much. This is because transient
localization implies that during the integration of C(t) the positive
and the negative part of C(t) are canceled out, and thus minor
changes in C(t) will result in a big difference in mobility. Our
result is generally in agreement with previous literatures8,13.
Based on these findings we can conclude that when the isotropy
of the system is increased, the band region tend to expand while
the transient localization regime would tend to diminish18.
Physically, the first conclusion can be understood by enlarged
bandwidth in two dimension and the second conclusion can be
understood by considering that Anderson localization length for
two dimension is larger than that in one dimension44.

General charge transport regime diagram. Based on the EPC
effect on the carrier mobility, the mean free path, the optical
conductivity, and the one-particle spectral function, we are able to
sketch a schematic “regime diagram” for the charge transport

mechanisms as shown in Fig. 7. The PA regime is determined by
μH-P > μH, short lmfp, C(t)H-P ≈ C(t)PA and narrow bound state
states in the spectral function. The TL regime is determined by
μH-P ≥ μP, intermediate lmfp, localization peak in optical con-
ductivity, C(t)P ≈ C(t)TL and a “smeared out” spectral function.
The BL regime is determined by μH-P ≈ μM, large lmfp, Drude-like
peak in optical conductivity and sharp quasiparticle peak in the
spectral function. In Fig. 7 we use μH-P > μH, μH-P ≥ μP and lmfp >
R for the boundaries of the PA regime, TL regime, and BL regime
respectively, and using other indicators such as the appearance of
Drude-like peak for the BL regime may shift the boundaries to
some extent but the general picture remains intact. On this (V,
ΔV) plane we are also able to identify an “intermediate” regime
that lies among the PA regime, TL regime, and BL regime. In this
regime, μH-P is significantly lower than both μH and μP, and the
carrier mean free path is still less than the lattice constant, for-
bidding the band description. In fact, for the pure Holstein model
case (ΔV= 0), the intermediate regime simply degenerates into
the canonical hopping-band crossover. The crossover from the BL
regime to the TL regime has also been reported by introducing
transient localization correction to band transport18. The gray
solid arrows and gray dashed arrows in Fig. 7 indicate the shift of
the boundaries upon increasing local EPC and increasing elec-
tronic coupling isotropy respectively, based on Figs. 3, 4 and 6. To
provide a rough intuition of the distribution of parameters for
realistic organic semiconductors on this (V, ΔV) plane, in Fig. 7
we have also marked the value of V and ΔV for several common
organic semiconductors using reported values from recent
literature32. These materials are pMSB, pyrene, naphthalene,

Fig. 5 Spectral function for the Holstein-Peierls model and pure Peierls model. Spectral function at 300 K for the Holstein–Peierls model (a–g) and the
pure Peierls model (h, i). Panel h and i has the same parameter as panel e and c respectively except that in Panel h and i the local EPC is left out.
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perylene, anthracene, DATT, rubrene, and pentacene from left to
right. We note that the colors at the location of the markers do
not represent a prediction of the charge transport mechanism for
the corresponding materials because the materials do not neces-
sarily share the same local EPC coupling strength, transport
network and intermolecular vibration frequency with the para-
meters used in this work.

Discussion
In this work, we present a nearly exact theoretical study of the
carrier mobility in Holstein–Peierls model with parameters rele-
vant to organic semiconductors. By carefully investigating the
effect of both local and nonlocal EPCs on the carrier mobility μ,

mean free path lmfp, per carrier optical conductivity
σðωÞ
ne0

, and one-
particle spectral function A(k, ω), we are able to identify the PA
regime, TL regime and BL regime on the (V, ΔV) plane. The PA
regime features μH-P > μH, short lmfp, and narrow bound states in
the spectral function. The TL regime features μH-P ≥ μP, inter-
mediate lmfp, localization peak in optical conductivity and a
“smeared out” spectral function. And the BL regime features μH-

P ≈ μM, large lmfp, Drude-like peak in optical conductivity and
sharp quasiparticle peak in the spectral function. The semi-
classical Marcus hopping regime is found to be around the corner
of small V and ΔV. Furthermore, some of the parameters in the
(V, ΔV) plane are recognized to lie in an intermediate regime that
does not exhibit the typical features described above, and this
regime can be considered as a generalization of the hopping-band
crossover regime in the Holstein model. We find that when
increasing local EPC strength, the PA regime will expand while
the TL and BL regime will diminish. When going from one
dimension to quasi-two-dimension, the TL regime will diminish
and the BL regime will expand. It should be noted that the
localization effect due to static disorder is not considered here,
which deserves further investigation.

Methods
Matrix product states. The evaluation of the current–current correlation function
CðtÞ ¼ ĵðtÞ̂jð0Þ� �

is performed by time-dependent matrix product states through
imaginary and real time propagation. The matrix product states method represent
the wavefunction of many-body system as the product of a series of matrices26:

Ψj i ¼ ∑
fag;fσg

Aσ1
a1
Aσ2
a1a2

� � �AσN
aN�1

σ1σ2 � � � σN
�� �

ð10Þ

σ i
�� �

is the basis for each degree of freedom. Aσ i
ai�1ai

are matrices in the chain
connected by indices ai. {⋅} in the summation represents the contraction of the
respective connected indices, and N is the total number of degrees of freedom
(DOFs) in the system. The dimension of ai is called (virtual) bond dimension, while
the dimension of σi is called physical bond dimension. In principle, the time-
dependent algorithms for MPS27 is able to solve the time-dependent Schrödinger
equation in an exact manner if the bond dimension is infinite. In practice, the
accuracy of the method can be systematically improved by using a larger bond
dimension, until convergence of interested physical observables within arbitrary
convergence criteria.

Fig. 6 The isotropy effect for several typical values of V1 and ΔV1. a–d are the correlation functions C(t) and e–h are the corresponding mobilities μ. For a
and e, V1= 5 meV and ΔV1= 0meV; For b and f, V1= 5meV and ΔV1= 20meV; For c and g, V1= 90meV and ΔV1= 0meV; For d and h, V1= 90meV
and ΔV1= 40meV.

Fig. 7 A schematic “regime diagram” showing the phonon-assisted
transport (PA) regime, transient localization (TL) regime, band-like (BL)
regime, and intermediate regime on the (V,ΔV) plane for the carrier
mobility of the Holstein–Peierls model. The hopping regime is achieved in
the ΔV= 0 limit of the PA regime. Gray solid arrows show qualitatively the
shift of the boundaries when local EPC increases. Gray dashed arrows show
qualitatively the shift of the boundaries when transport network changes
from one dimension to quasi-two-dimension or equivalently when
electronic coupling isotropy increases. The green dots represent the V and
ΔV of several common organic semiconductors.
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Finite temperature algorithm. The finite temperature effect is taken into account
through thermal field dynamics, also known as the purification method26,45. The
thermal equilibrium density matrix of any mixed state in physical space P can be
expressed as a partial trace over an enlarged Hilbert space P⊗Q, where Q is an
auxiliary space chosen to be a copy of P. The thermal equilibrium density operator
can then expressed as a partial trace of the pure state Ψβ in the enlarged Hilbert
space over the Q space:

ρ̂β ¼
e�βĤ

Z
¼ TrQjΨβihΨβj

TrPQjΨβihΨβj
ð11Þ

and the pure state jΨβi represented as an MPS is obtained by the imaginary time
propagation from the locally maximally entangled state Ij i ¼ ∑i ij iP ij iQ to β/2 in
the one electron manifold:

jΨβi ¼ e�βĤ=2jIi: ð12Þ
To calculate C(t), jΨβi, and ĵð0ÞjΨβi are propagated in real time to obtain

e�iĤt jΨβi and e�iĤt ĵð0ÞjΨβi and then C(t) is calculated by:

CðtÞ ¼ hΨβjeiĤt ĵð0Þe�iĤt ĵð0ÞjΨβi=Z: ð13Þ
Here the current operator ĵð0Þ is represented as an MPO and inner-product for jΨβi
includes tracing over both P space and Q space. The construction of the MPOs is
performed in an automatic and optimal fashion through our recently proposed
algorithm46. Note that different from the simulation of diffusion dynamics, the
initial state of the formulation does not require electronic excitation from the zero
electron manifold. In principle, both imaginary and real time propagation can be
carried out by any time evolution methods available to matrix product states27. In
this work, we use the time-dependent variational principle based projector splitting
time evolution scheme47,48, which is found to be relatively efficient and accurate
combined with graphic processing unit (GPU) in our recent work49.

Data availability
The data generated in this study has been deposited in Zenodo with DOI 10.5281/
zenodo.5009584.

Code availability
The computer code for the MPS algorithms used in this work is available publicly via
https://github.com/shuaigroup/Renormalizer50.
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