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We propose a method

for calculating the non-

radiative decay rates for

polyatomic molecules in-

cluding anharmonic ef-

fects of the potential en-

ergy surface (PES) in

the Franck-Condon re-

gion. The method com-

bines the n-mode repre-

sentation method to construct the ab initio PES and the nearly exact time-dependent den-

sity matrix renormalization group method (TD-DMRG) to simulate quantum dynamics. In

addition, in the framework of TD-DMRG, we further develop an algorithm to calculate the

final-state-resolved rate coefficient which is very useful to analyze the contribution from each

vibrational mode to the transition process. We use this method to study the internal conver-

sion (IC) process of azulene after taking into account the anharmonicity of the ground state

PES. The results show that even for this semi-rigid molecule, the intramode anharmonicity

enhances the IC rate significantly, and after considering the two-mode coupling effect, the

rate increases even further. The reason is that the anharmonicity enables the C−H vibra-

tions to receive electronic energy while C−H vibrations do not contribute on the harmonic

PES as the Huang-Rhys factor is close to 0.

Key words: Time-dependent density matrix renormalization group method, Nonradiative

decay rate, Quantum dynamics, Matrix product state

I. INTRODUCTION

The photophysical properties of molecules have long

been of research interest [1]. Especially in the last three

decades, with the invent of organic light-emitting diode
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2020”.
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(OLED) [2], luminescent molecules have attracted con-

tinuous attention from academia and industry. One of

the most influential factors on luminescent quantum ef-

ficiency is the intrinsic photophysical properties of the

molecules. The famous Jablonski diagram gives the

most basic physical picture of molecular photophysics.

A molecule in the electronic excited state can emit pho-

tons radiatively back to the electronic ground state,

or it can return to the ground state through an inter-

nal conversion process (transition within the same spin

manifold) or an intersystem crossing process (transition

DOI:10.1063/1674-0068/cjcp2108138 565 c⃝2021 Chinese Physical Society



566 Chin. J. Chem. Phys., Vol. 34, No. 5 Jia-jun Ren et al.

between different spin manifolds), in which the elec-

tronic energy is dissipated to vibrations in the form of

heat. Both internal conversion and intersystem cross-

ing are nonradiative transition processes. The relative

magnitude between the radiative transition rate kr and

the nonradiative transition rate knr ultimately deter-

mines the intrinsic quantum efficiency η=kr/(kr+knr)

of the molecular material [3]. Therefore, it is crucial

to develop theories and computational methods to pre-

dict the molecular nonradiative transition rates. In this

work, we will focus on the rate theory of the internal

conversion process.

The molecular internal conversion process is es-

sentially a nonadiabatic process in which the Born-

Oppenheimer (BO) approximation fails. The internal

conversion processes can be roughly classified into two

types depending on the characteristics of the potential

energy surface (PES) (FIG. 1). In type I, the nonadi-

abatic coupling constant is very large and thus inter-

nal conversion is an ultrafast process with time scales

in the order of fs to ps [4]. This usually occurs when

the energy gap between electronic states is relatively

small, such as the case of avoided crossing or conical in-

tersection between PESs. Internal conversion between

electronic excited states (generally having small energy

gaps) are usually considered to belong to this type,

photochemical reactions far from the Franck-Condon

(FC) region (generally having a low energy conical in-

tersection between the S1 and S0 states) are also of this

type. In type II, the coupling between electronic states

is relatively small, and the time scale of the internal

conversion process is in the order of ns. It is usu-

ally considered that internal conversion from S1 state

to S0 state (having a relatively large energy gap) in

the FC region, which is far from conical intersection,

belongs to this type. Theoretically, due to the large

nonadiabatic coupling between the electronic states in

type I, BO fails completely and thus the simulation

of real-time nonadiabatic dynamics becomes necessary,

including the full-quantum multi-configuration time-

dependent Hartree (MCTDH) method [5], the time-

dependent density matrix renormalization group (TD-

DMRG) method [6, 7], the semiclassical methods [8, 9],

and the hybrid quantum-classical methods [10, 11]. For

the latter two, direct dynamics on the ab initio PES

can be done in combination with ab initio electronic

structure packages [12–14]. However, these real-time

nonadiabatic quantum dynamics approaches are not ap-

(a) (b)

FIG. 1 Schematic diagram of two types of internal conver-

sion processes. (a) The energy gap between the PESs is

small, the NAC is large, and the internal conversion pro-

cess is ultrafast. (b) The energy gap between the PESs is

large, the NAC is small, and the internal conversion process

is slow.

plicable to the internal conversion process of type II,

mainly because the transition time is too long to simu-

late quantum dynamically. The long-time propagation

is not only computationally intensive but also has no

guarantee of accuracy. For type II, because the nona-

diabatic coupling is small, the initial and final states

before and after the transition can still be considered

as a BO state. The transition between them is trig-

gered by the nonadiabatic coupling as a perturbation,

the rate of which can be calculated by Fermi’s golden

rule (FGR). It is worth noting that since the radiative

transition rates of organic fluorescent molecules are usu-

ally on the time scale of ns, if the nonradiative process of

the molecule falls into type I, the molecule either does

not emit light or emits light with very low efficiency.

Molecules with a high quantum efficiency generally be-

long to type II. Therefore, the theory applicable to type

II is more relevant for predicting fluorescent molecules

with high quantum efficiency.

Qualitative and semi-quantitative theories applica-

ble to type II of internal conversion process were es-

tablished in the 1960s [15–17]. Lin established the

above-mentioned theoretical framework for calculating

the internal conversion rate based on BO states and

nonadiabatic coupling as a perturbation [16], which is

later combined with ab initio electronic structure cal-

culations to predict the nonradiative transition rate of

real molecules [18–20]. In this theoretical framework,

the PESs of the ground and excited states are approx-

imated as a multidimensional harmonic (HA) poten-

tial, accompanied by displacement, frequency difference

(distortion), and mode-mixing (Duschinsky rotation ef-

fect) between the PESs. The Duschinsky rotation ef-
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fect, which scrambles the harmonic modes, was found to

be important to the internal conversion process [19, 21].

However, in this computational method, the vibrational

modes are artificially divided into accepting and pro-

moting modes, and the displacement of the promoting

mode is approximated as 0, called the promoting mode

approximation. Later, Shuai et al. derived an analytical

rate formula in the time domain beyond the promoting

mode approximation, which allows a rigorous treatment

of displacement, distortion, and rotation between the

ground and excited state PESs [22, 23]. Calculations

of the nonradiative transition rate for a series of poly-

atomic molecules show that this method enables quan-

titative prediction of the quantum efficiency of OLED

molecules [24].

The above computational methods are based on the

harmonic approximation of the PES with the anhar-

monicity completely ignored. In the radiative transi-

tion process, this approximation may be valid, because

most of the electronic energy is emitted through the

form of light. Thus, the final vibrational state is of

low energy and can only explore the low energy part

of the PES, where the anharmonicity is believed to be

negligible. On the contrary, in the internal conversion

process, since all the electronic excited energy needs

to be received by the vibrations, they will be excited

to high energy levels. Because the anharmonicity is

very pronounced in the high energy part of the PES far

from the equilibrium position, the anharmonic effect is

very important for the internal conversion process (see

schematic diagram in FIG. 2). Lin’s original work in

1966 [16] has already pointed out the qualitative role of

anharmonicity: it scrambles the harmonic mode (simi-

lar to the Duschinsky rotation effect) and thus is very

important for vibrational relaxation; in addition, anhar-

monicity changes the vibrational wavefunction of the fi-

nal states, which in turn changes the FC factor. In fact,

these two factors are closely related.

In the framework of the FGR rate theory, the quanti-

tative theoretical study of the anharmonic effect on the

molecular internal conversion process has only started

in the last decade [25–30]. Humeniuk et al. used a time-

independent (TI) approach under the Morse potential

model to obtain the anharmonic vibrational wavefunc-

tion by exact diagonalization and then calculated the in-

ternal conversion rate of coumarin molecules by means

of the sum-of-states method [28]. They found that,

compared with HA PES, the Morse PES significantly in-

FIG. 2 Schematic diagram of the PESs and the wavefunc-
tions of the initial and final vibrational states during (a) the
radiative transition process and (b) internal conversion pro-
cess. The initial state is in orange, and the final state is in
blue (filled ones are on the harmonic potential, and dashed
ones are on the Morse potential).

creases the internal conversion rate when the electronic

excitation energy is large. However, for real molecules,

the computational cost for sum-of-states calculations in-

creases exponentially with the number of atoms and

thus the method is not scalable. A more promis-

ing approach is to use time-dependent (TD) methods.

Zhu et al. used the second-order cumulant expan-

sion method to consider the anharmonicity effect (in-

troduced through the high-order force constants at the

equilibrium position) on the vibrationally resolved elec-

tronic spectra and the rate of charge transfer [25]. This

method can be directly extended to the calculation of

internal conversion rate. Pollak et al. proposed a semi-

classical approach to calculate the internal conversion

rate on the anharmonic PES, and they calculated the in-

ternal conversion rate for the Morse potential model [26]

and formaldehyde [27]. The biggest advantage of this

approach is that it is able to do on-the-fly calculations.

Recently, we proposed to simulate the dynamics on

the anharmonic PES by the full-quantum TD-DMRG

method, the effectiveness of which has been proved on

the Morse PES as well as the uncoupled single-mode

anharmonic PES of real molecules [30].

In addition to the accurate quantum dynamics

method, another difficulty in the calculation of the non-

radiative transition rate on the anharmonic PES for a

real polyatomic molecule lies in how to construct the

PES. One approach is to make a high-order Taylor ex-

pansion of the PES at the equilibrium position by cal-

culating the high-order force constants. This approach

is relatively cheap and is used more often in calculat-

ing the anharmonic vibrational frequencies of semi-rigid

polyatomic molecules of medium to large sizes, espe-

cially in combination with the vibrational second-order
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perturbation theory and quasi fourth-order force con-

stant [31, 32]. However, the problem with the Taylor

expansion form of PES is that it has a large error away

from the reference point, and more seriously, it often in-

troduces an artificial “potential hole”. If the potential

barrier between the reference point and artificial hole is

not high enough, the wavepacket may collapse into this

artificial hole, which is disastrous for the dynamics. An-

other approach is the multi-mode expansion, which is

called n-mode representation (n-MR) by expanding the

PES into a sum of one-mode potential, two-mode poten-

tial, three-mode potential, etc. [33, 34]. The advantage

of this approach is that the real PES can be approxi-

mated by a low-level expansion, making the number of

coupled modes in the approximated PES smaller. How-

ever, this approach requires a scan of the PES when

obtaining each term, and thus is more computationally

intensive for large systems with a high expansion order.

The third method, which is the most accurate one, is

to fit the global PES directly. Previously, this method

was only applicable to molecules with a few atoms, but

with the development of deep machine learning over

the years, the global PES can be obtained for medium-

sized systems [35, 36]. However, the obtained PES is

generally not a sum-of-products (SOP) form and thus

cannot be directly used in the high-dimensional dynam-

ics methods like multilayer MCTDH [37], TD-DMRG,

etc. Comparing the advantages and disadvantages of

these PES construction methods, we propose to com-

bine n-MR method and TD-DMRG method to calcu-

late the nonradiative transition rate of real polyatomic

molecules at the ab initio level.

II. THEORY AND METHODOLOGY

In this section, we will first give the general two-state

molecular Hamiltonian that is widely used to describe

the nonradiative decay process and then we give the

time domain expression of the transition rate. Second,

we will briefly introduce the n-MR method to approx-

imate the real molecular PES around the equilibrium

geometry. Third, the main idea and ingredients of TD-

DMRG to calculate the time correlation function are

described. In the fourth part, to analyze the rate pro-

cess, the expression of final-state-resolved (FSR) rates

is derived based on TD-DMRG for uncoupled final PES

and an efficient sampling algorithm to sample the most

important final states is discussed.

A. Two-state molecular Hamiltonian and rate theory

under perturbation approximation

When nonadiabatic coupling is relatively weak, the

initial and final states can be approximated by BO

states, respectively. In addition, the contribution of the

molecular vibrational motion to the electronic transi-

tion is dominant during internal conversion, while the

effect of molecular rotation can usually be ignored. By

introducing the Eckart condition [38], the coupling be-

tween vibration and rotation can be minimized, and

thus only the vibrations need to be considered. Com-

bining these two points, the initial and final states (i

for the initial state and f for the final state) can be

represented as

Ψi/f(r, q) = ϕi/f(r; q)Xi/f(q) (1)

ϕi/f(r; q) is the eigenstate of the electronic Hamiltonian

under the nuclear configuration q. r is the coordinates

of electrons. q=q1, q2, · · · , qN are the vibrational co-

ordinates of the system. The vibrational Hamiltonian

is

Ĥi/f = T̂ + Vi/f(q) (2)

T̂ is the kinetic energy operator of the vibrational mo-

tions. Xi/f(q) is the vibrational eigenstate on the adia-

batic PES Vi/f(q) (the energy reference is the minimum

of each PES). The use of normal coordinates at the equi-

librium structure is very suitable for semi-rigid systems.

The first advantage is that the kinetic energy operator

is very simple, T̂=
N∑
l=1

−1

2

∂2

∂q2l
(in the following expres-

sions, we use atomic units). In addition, the coupling

between modes is small, which will be beneficial for con-

structing PES and simulating dynamics later. Due to

the possible displacements, torsions and rotations be-

tween the initial PES and final PES, the two sets of

normal coordinates are not the same and the relation

between them is

qi,m =
∑
l

Jmlqf,l +∆qi,m (3)

where J is called the Duschinsky rotation matrix and

∆q is the projection of the displacement between the

initial and final state equilibrium structures in the di-

rection of the normal mode. The Huang-Rhys (HR) f-
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actor is defined as Si/f,m=
1

2
ωi/f,m∆q2i/f,m, characteriz-

ing the strength of the electron-vibrational coupling. At

the ab initio level, the methods to obtain J and ∆q for

polyatomic molecules are well-established [39, 40]. In

the following, qi/f is assumed to be the normal coor-

dinates. After considering nonadiabatic coupling be-

tween the two electronic states as Ĥ1, Ψi/f is no longer

stationary. Commonly, only the first-order derivative

term of nonadiabatic coupling is considered, and the

second-order derivative is neglected. The nonadiabatic

coupling between two BO PESs is

Ĥ1 = −
∑
l

F l
fi(q)|ϕf⟩⟨ϕi|

∂

∂ql
+ h.c. (4)

F l
fi(q) = ⟨ϕf |

∂

∂ql
|ϕi⟩r (5)

In the FC region far from conical intersection, the nona-

diabatic coupling matrix element F l
fi(q) is small and also

varies very smoothly. It is often to adopt the Condon

approximation at the reference position to approximate

F l
fi(q) as a constant independent of the nuclear config-

uration, i.e. F l
fi(q) = F l

fi(q
ref).

In addition to the approximation that the initial and

final states can be represented by BO states, another

assumption is that the rate of vibrational relaxation on

the initial PES is much faster than the electronic transi-

tion, so that the initial state is in a thermal equilibrium

distribution. This assumption is generally valid for flu-

orescent molecules because the vibrational relaxation

time is roughly in the order of ps, while the excited

state lifetime is roughly in the order of ns. Under the

condition that both approximations hold, the internal

conversion rate can be calculated by FGR rate theory,

which is

kic = 2π
∑
uv

Pu|H1,fv,iu|2δ(Eiu +∆Ead − Efv) (6)

= 2π
∑
uv

Pu|
∑
l

F l
fi⟨Xfv(q)|

∂

∂ql
|Xiu(q)⟩|2δ(Eiu +∆Ead − Efv) (7)

iu denotes the uth vibrational eigenstate of the initial

PES and fv denotes the vth vibrational eigenstate of the

final PES, whose eigenenergies are Eiu and Efv, respec-

tively. Pu=
e−βEiu

Z
is the Boltzmann distribution of the

initial state at the temperature of β=1/kBT (Z is the

partition function). ∆Ead is the adiabatic excitation

energy between the PESs. For a general PES, the vibra-

tional eigenfunction X(q) is a high-dimensional wave-

function and it is very difficult, if not impossible, to

compute each of them. If there is no coupling between

the modes (V (q)=
∑
l

V (ql)), the vibrational eigenstate

can be written in the form of a Hartree product of the

single-mode eigenstates, and the energy is also a sum-

mation of the individual mode eigenenergies

Xiu(qi) =
∏
l

χiul
(qi,l), Eiu =

∑
l

ϵiul
(8)

Xfv(qf) =
∏
l

χfvl
(qi,l), Efv =

∑
l

ϵfvl
(9)

Additionally, if there is no mode-mixing (J=I,

qi=qf+∆q), the above equation can be further simpli-

fied as

kic = 2π
∑

u1,u2,··· ,uN ,
v1,v2,··· ,vN

Pu1,u2,··· ,uN

∣∣∣∣∣∣
∑
l

F l
fi⟨χfvl(ql)|

∂

∂ql
|χiul

(ql +∆ql)⟩
∏
k ̸=l

⟨χfvk
|χiuk

⟩

∣∣∣∣∣∣
2

δ(Eiu +∆Ead − Efv) (10)

ql is called the promoting mode, contributing to the

transition of the electronic state. Only those modes

with nonzero nonadiabatic coupling constant can be-

have as the promoting mode. The other modes are

called the accepting modes. As the name implies,

for multi-mode molecules, the electronic energy mainly

dumps into the accepting modes. In addition, the mag-

nitude of the FC factor between the final and initial

states of the accepting modes satisfying the energy con-

servation condition mainly determines the internal con-
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version rate. However, even though the modes are un-

coupled, the calculation of Eq.(10) using the sum-of-

states approach has exponential complexity. Hence, it

is preferred to use the TD approach, in which the δ

function is expressed as

δ(Eiu +∆Ead − Efv) =
1

2π

∫ ∞

−∞
ei(Eiu+∆Ead−Efv)t dt

(11)

The rate can be written as the integral of the autocor-

relation function of Ĥ1 in the time domain

kic =

∫ ∞

−∞
ei∆EadtC(t) dt (12)

C(t) = ⟨Ĥ1(t)Ĥ1⟩T

= Tr

(
e−βĤi

Z(β)
eiĤitĤ1e

−iĤf tĤ1

)
(13)

where Z(β)=Tr(e−βĤi). For the case in which both

PESs are harmonic, the time correlation function

(TCF) C(t) in Eq.(13) has an analytical formula [22].

For general PESs, C(t) needs to be computed numer-

ically by dynamics methods. The challenges for the

calculation of the internal conversion rate at ab initio

level of real molecules are the construction of PES in

Eq.(2) and the simulation of the dynamics in Eq.(13).

Finally, it is worth noting that for very flexible

molecules, such as molecules whose PESs have many lo-

cal minima (multiple conformations) with close energy,

or molecules whose vibrations have a large amplitude of

motion, using normal coordinates to construct PES and

to do dynamics is no longer efficient, because the cou-

pling between normal modes will be very large. In these

cases, it is better to use curvilinear internal coordi-

nates related to the molecular structure, but the kinetic

energy operator in curvilinear coordinates is generally

very complicated. The method to calculate the nonra-

diative transition rate using curvilinear coordinates is

still under development and deserves further study.

B. Construction of molecular potential energy surface

The n-MR PES has expression

V (q1, q2, · · · , qN ) = V (0)(qref) +
∑
i

V (1)(qi; q
ref
l ̸=i) +

∑
i<j

V (2)(qi, qj ; q
ref
l ̸=ij) + · · · (14)

V (1)(qi; q
ref
l ̸=i) = V (qi; q

ref
l ̸=i)− V (0)(qref) (15)

V (2)(qi, qj ; q
ref
l ̸=ij) = V (qi, qj ; q

ref
l ̸=ij)− V (1)(qi; q

ref
l ̸=i)− V (1)(qj ; q

ref
l ̸=j)− V (0)(qref) (16)

· · ·

Eq.(14) is an incremental expression, in which V (0) is

the energy of the reference point. The second terms

V (1) and third terms V (2) are the incremental one-mode

and two-mode potentials. (qi; q
ref
l ̸=i) indicates that only

qi can be different from the reference point. Hence,

V (qi; q
ref
l ̸=i) in Eq.(15) corresponds to a one-dimensional

(1D) curve of PES across the reference point along qi.

Similarly, V (qi, qj ; q
ref
l ̸=ij) in Eq.(16) represents the two-

dimensional (2D) surface of PES across the reference

point along qi, qj . However, the higher-order terms

contain contributions from lower-order terms, for ex-

ample, the 2D surface V (qi, qj ; q
ref
l ̸=ij) already contains

two 1D curves V (qi; q
ref
l ̸=i), V (qj ; q

ref
l ̸=j) and the energy

of the reference point. Therefore, in the incremen-

tal expression Eq.(14), the contribution of the lower-

order terms needs to be deducted from each V (n) to

avoid double-counting. Obviously when any of the

variable coordinates in V (n) is in the reference point,

V (n)(qi, qj = qrefj , qk · · · ; qref
l ̸=ijk···)=0. As the expansion

order n increases, the approximate PES gradually ap-

proaches the exact one. This multi-mode expansion is

exact when expanding to N -mode potential V (N). In

practice, only n<N order is usually enough to converge.

Assuming that 10 points are scanned in each coordinate,

the number of single points needed to compute an n-

mode PES of a system havingN modes is about Cn
N10n.

One advantage of n-MR is that, since it is a semi-global

PES, there is no artificial hole. Another advantage is

that since there are only at most n-mode coupled terms,

it is relatively easy to fit them into a dynamics-friendly

SOP form after some post-processing, such as potfit [41]

and function fitting. In the function fitting method, a

set of functions for each mode is first defined {fk(x)}
(k is the label for different functions), which can be

the same or different for each mode. For simplicity, we

use the same monomial for each mode as the fitting
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function, then k represents the power of the monomial,

k=0, 1, 2, · · · .

fk(x) = xk (17)

For each term V (n) in Eq.(14), it can be fitted to a

polynomial of the form

Ṽ (n)(qi1 , · · · , qin)=
∑

k1,··· ,kn

Ck1,··· ,kn
fk1(qi1) · · · fkn(qin)

(18)

It is clear that Ṽ (n) has an analytical SOP form.

With n-MR method, two independent PESs Vi(qi)

and Vf(qf) in Eq.(2) can be constructed in the normal

coordinates of each state. However, it is necessary to

work in a single coordinate system in the dynamics.

Hence, the PESs should be further transformed into

one set of normal coordinates according to the relation

Eq.(3). For example, in the following we will work in

the normal coordinates of the final state and the initial

PES is reexpressed as

Vi(qi) = Vi(Jqf +∆qi) = V ′
i (qf) (19)

In principle, instead of using Eq.(3) to rewrite Vi(qi)

in qf to obtain V ′
i (qf), it is also possible to scan Vi

directly along qf . But in doing so, Vi may require

a higher order n-MR to achieve satisfactory accuracy.

For example, the potential energy term λq2i1 in 1-MR

PES with initial state normal coordinates becomes

λ
∑
lm

(J1lqfl+∆qi1)(J1mqfm+∆qi1) with final state nor-

mal coordinates, which includes two-mode potential en-

ergy terms appearing in 2-MR PES.

C. TD-DMRG quantum dynamics method

The wavefunction ansatz in TD-DMRG is

|Ψ⟩ =
∑
σ

Cσ1σ2...σN
|σ1σ2 . . . σN ⟩ (20)

=
∑
aσ

Aσ1
a1
Aσ2

a1,a2
. . . AσN

aN−1
|σ1σ2 . . . σN ⟩ (21)

|σi⟩ is the orthonormal primitive basis for each vibra-

tional mode qi, which is called the physical bond with

dimension d. In this work, we use simple harmonic oscil-

lator eigenfunctions (SHO) as the primitive basis func-

tions. Since the full rank coefficients Cσ1σ2...σN
are ap-

proximated as the product of a chain of rank-3 matrices

(tensors) Aσi
ai−1,ai

, this ansatz is called matrix product

state (MPS) [42]. The size of ai connecting adjacent

tensors is called the (virtual) bond dimension, denoted

as MS . The accuracy of an MPS approximating the

exact wavefunction can be systematically improved by

increasing MS . Akin to MPS, a common operator Ô

can be exactly decomposed into a matrix product form

with virtual bond dimension MO, called matrix product

operator (MPO).

Ô =
∑

w,σ,σ′

W
σ′
1σ1

w1 W
σ′
2σ2

w1,w2 . . .W
σ′
NσN

wN−1 |σ′
1σ

′
2 . . . σ

′
N ⟩⟨σNσN−1 . . . σ1| (22)

The potential energy term (Eq.(18)) and the other oper-

ators (Eqs.(2)−(4)) in the previous section can be con-

structed into MPOs using the automatic construction

algorithm proposed in our former work [43]. Within

the MPS/MPO framework, it is straightforward to rep-

resent Ô|Ψ⟩ as another enlarged MPS with bond dimen-

sion MOMS .

Ô|Ψ⟩ =
∑

w,a,σ′

A
′σ′

1

{w,a}1
A

′σ′
2

{w,a}1,{w,a}2
. . . A

′σ′
N

{w,a}N−1
|σ′

1σ
′
2 . . . σ

′
N ⟩ (23)

A
′σ′

i

{w,a}i−1,{w,a}i
=
∑
σi

W
σ′
iσi

wi−1,wiA
σi
ai−1,ai

(24)

A similar expression is available for operator multipli-

cation. In TD-DMRG, there are many schemes that

can evolve an MPS according to the time-dependent

Schrödinger equation [44]. In this work, we use the
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second-order projector splitting scheme (PS) based on

the time-dependent variational principle. This scheme

is more accurate and efficient than the others according

to our former experience. The detailed algorithm can

be found in the original PS work [45] or our previous

work [46].

At T=0, the TCF C(t) (Eq.(13)) can be further sim-

plified as

C(t) = eiEi0t⟨Xi0|Ĥ1e
−iĤf tĤ1|Xi0⟩

= eiEi0t⟨Xf(t/2)
∗|Xf(t/2)⟩ (25)

|Xf(t/2)⟩ = e−iĤf t/2Ĥ1|Xi0⟩ (26)

The asterisk represents complex conjugate. |Xi0⟩ is the
lowest vibrational eigenstate on the initial PES, which

can be calculated by the standard DMRG ground state

algorithm, i.e., iteratively optimizing each local matrix

Aσi while keeping the others unchanged [42, 47]. The

initial state Ĥ1|Xi0⟩ of the dynamics is calculated ac-

cording to Eq.(23). At T=0, it is possible to evolve only

the dynamics for t/2 to obtain TCF at t thus reducing

the computational cost.

At finite temperature, it is able to obtain the density

matrix at thermal equilibrium ρβ=
e−βĤi

Z(β)
by evolving

the imaginary-time Schrödinger equation from τ=0 to

τ=β/2 [48].

− ∂

∂τ
ρ(τ) = Ĥρ(τ) (27)

At infinitely high temperature (β=0), the initial

state ρ(0) is defined to be a locally maximal en-

tangled state satisfying the normalization condition

⟨⟨ρ(τ)|ρ(τ)⟩⟩=Tr(ρ(τ)†ρ(τ))=1, which is conveniently

represented as an MPO with MO=1. To distinguish

it from the MPO of a physical operator, we call the

matrix product form of the density matrix as matrix

product density matrix (MPDM).

ρ(0) =
e−0Ĥi√
Z(0)

=
∏
i

∑
σi

1√
d
|σi⟩⟨σi| (28)

After each evolution step along the imaginary axis, ρ(τ)

needs to be normalized. The imaginary-time evolution

finally yields ρ(β/2)=e−βĤi/2/
√
Z(β)=ρ

1/2
β . Hence,

TCF in Eq.(13) can be reformulated as

C(t) = Tr
(
ρ
1/2
β eiĤitĤ1e

−iĤf tĤ1ρ
1/2
β

)
= Tr(ρi(t)

†Ĥ1ρf(t)) (29)

where ρf(t)=e−iĤf tĤ1ρ
1/2
β and ρi(t)=e−iĤitρ

1/2
β are the

density matrixes obtained by the real-time evolution.

It should be noted that in some papers, the density

matrix is purified to a wavefunction according to the

thermo field dynamics approach by introducing an aux-

iliary space, thus obtaining wavefunction-based equa-

tions of imaginary-time and real-time dynamics [42, 49].

These two formulations are essentially equivalent to

each other.

The main advantages of using TD-DMRG to simulate

dynamics are as follows: (i) TD-DMRG is full quan-

tum and the accuracy can be systematically improved

to achieve numerically exact results. (ii) The compu-

tational complexity of TD-DMRG algorithm is in prin-

ciple polynomial, rather than exponential, with respect

to the number of atoms in the system.

D. Final-state-resolved rate coefficient

Besides the total transition rate, in this subsection,

we will give an algorithm to calculate the numerically

exact FSR rate coefficient for uncoupled final PES, such

as HA PES, 1-MR PES. To the best of our knowledge,

the only way to obtain the FSR rates so far was by

expensive sum-of-states methods.

According to Eq.(6), Eq.(11) and Eq.(29), the FSR

rate can be expressed in the time domain as

kv = kic(i → fv)

=

∫ ∞

−∞
ei∆EadtTr(ρ

1/2
β eiĤitĤ1|Xfv⟩

⟨Xfv|e−iĤf tĤ1ρ
1/2
β ) dt (30)

=

∫ ∞

−∞
ei∆Eadt⟨Xfv|Γ(t)|Xfv⟩ dt (31)

Γ(t) = ρf(t)ρi(t)
†Ĥ1 (32)

At T = 0,

Γ(t) = eiEi0t|Xf(t/2)⟩⟨Xf(t/2)
∗| (33)

Γ(t) is in the form of an MPDM and Tr(Γ(t))=C(t).

Since Γ(t) is the product of two MPDMs (Eq.(32))

or two MPSs (Eq.(33)), its bond dimension is
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MΓ=MρiMρf
MĤ1

or MΓ=M2
Xf

, which is usually a very

large value. Thus, Γ(t) needs to be compressed to re-

duce the computational cost and memory. In the case of

uncoupled final PES, Eq.(9) holds, and v=v1v2 · · · vN .

For HA PES, the eigenstate of a single mode χfvl
has an

analytical form; for 1-MR PES, χfvl , called modal, can

be calculated numerically by vibrational self-consistent

field (VSCF) [50]. If χfvl is chosen to be the primitive

basis in TD-DMRG (|σ⟩≡|v⟩),

Γdiag(t)|σ=v = ⟨
∏
l

χfvl |Γ(t)|
∏
l

χfvl
⟩ (34)

=
∑
w

W v1v1
w1

W v2v2
w1,w2

. . .W vNvN
wN−1

(35)

=
∑
w

W̃ v1
w1

W̃ v2
w1,w2

. . . W̃ vN
wN−1

(36)

Γdiag(t) is the diagonal element with the primitive

basis χfvl , which can be expressed as an MPS with

W̃ vl
wl−1,wl

=W vlvl
wl−1,wl

. As a result, Eq.(31) can be written

as

kv =

∫ ∞

−∞
ei∆EadtΓdiag(t)|σ=v dt (37)

=
( ∫ ∞

−∞
ei∆EadtΓdiag(t) dt

)∣∣∣∣
σ=v

(38)

The integration of Γdiag(t) can be done by the trape-

zoidal algorithm and by using the symmetry of TCF,

Ihalf =
∞∑
j=0

τ

2

[
ei∆EadjτΓdiag(jτ) + ei∆Ead(j+1)τ

×Γdiag((j + 1)τ)

]
(39)

kv = I|σ=v = (Ihalf + I∗half)|σ=v (40)

where τ is the time-step. When calculating Ihalf, MPS

compression is carried out after adding two MPSs. The

coefficient of each configuration v in I is the rate with

that configuration as the final state. If Γ(t) and Ihalf
are not compressed,

∑
v

I=kic. However, all the coef-

ficients are implicit in the form of the matrix product.

Because the number of final states is exponentially in-

creased with the number of modes, it is impossible to

obtain all I|σ=v explicitly. In fact, if we only care about

those final configurations that contribute the most to

the total internal conversion rate, a sampling approach

can be used. Inspired by the sampling algorithm and ge-

netic algorithm used in the ab initio quantum chemistry

DMRG to reconstruct configuration interaction wave-

function [51, 52], we propose a similar sampling algo-

rithm to obtain the dominant configurations of I. We

first define the occurrence probability of different occu-

pation numbers for each mode during the total transi-

tion.

pvl
=

∑
all vk,k ̸=l

kv1v2,··· ,vl,···vN

kic

=
∑

all vk,k ̸=l

1

kic
Av1Av2 · · ·Avl · · ·AvN (41)

Here, Avi are the local matrices of I. Note that∑
vl

pvl=1. According to this probability distribution,

the whole sampling procedure is the following:

1. calculate I and then calculate pvl according to

Eq.(41).

2. generate a random configuration v, calculate its

rate coefficient kv and keep it if it is greater than

a preset threshold ξ.

3. generate an integer random number k between 1

to N , and then mutate vk of the current v accord-

ing to the distribution pvk . v
′
k can be determined

by generating a random number between [0,1] and

check which interval it falls into. Repeat this step

if v′k=vk.

4. calculate the rate kv′ of this v′ and keep it

if kv′>ξ and it has not been kept yet. The

probability to accept this mutation is defined as

p(v→v′)=min

(
1,

kv′

kv

)
, and then generate a [0, 1]

random number to decide whether to accept this

mutation. If accepted, the new v=v′ and then go

back to step 3. Sampling ends if either the total

number of the kept configurations or the sum of

rate coefficient of the kept configurations reaches

the preset value.

Since it is an approximation to use one MPS for all

FSR rates, it is not guaranteed that all FSR rates are

positive in the actual calculation. Therefore, in the later

calculations, we set the threshold ξ to 0.

Finally, it is worth emphasizing that the methods

we propose to deal with the anharmonic PES of real

molecules are not only applicable to internal conversion

rates, but also can be used for the calculation of the e-
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FIG. 3 The chemical structure of azulene. The optimized
C−C bond lengths (in Å) of the S0 state (black) and S1

state (red) are also listed.

mission spectra (and the corresponding radiative tran-

sition rates) as well as for the calculation of intersystem

crossing rates.

III. RESULTS AND DISCUSSION

As a real example, in this section, we study the in-

ternal conversion process of the azulene molecule from

the S1 state to the S0 state. Azulene is the first ex-

perimentally discovered molecule with anti-Kasha rule

luminescence, which is from S2 to S0 [53, 54]. Its S1
to S0 internal conversion rate is very fast, with experi-

mental measurements of about 1−2 ps [55, 56], and thus

the S1 fluorescence quantum efficiency is very low. In

our previous work, we found that azulene is a semi-rigid

molecule, and even then there is a significant increase in

the internal conversion rate after considering the single-

mode (intramode) anharmonicity compared to that on

HA PES. In this work, the calculation is extended to

the 2-MR PES to study the effect of mode coupling on

the internal conversion process.

The S0 and S1 structures of azulene are first opti-

mized at (TD-)B3LYP/6-31G(d) level (all the following

electronic structure calculations are done in Gaussian

16 [57]). The total number of vibrational modes is 48.

Although we do not add symmetry constraints, the opti-

mized structure has C2v symmetry. The S0 and S1 equi-

librium structures are shown in FIG. 3. The adiabatic

excitation energy is 16478.4 cm−1. The normal mode

analysis at the S0 and S1 equilibrium structures is per-

formed, and then the Duschinsky rotation matrix J and

mode projection displacements ∆q are calculated us-

ing the molecular material property prediction package

(MOMAP) [58]. FIG. 4(a) gives the HR factors along

the normal modes of S0 and S1 states, respectively. For

the S0 state, the modes are numbered according to the

vibrational frequencies, while the mode numbering for

the S1 state makes the Duschinsky rotation matrix as

diagonalized as possible in accordance with the modes

of the S0 state. FIG. 4(b) shows the absolute values of

the Duschinsky rotation matrix J , and the red boxes

highlight the mixing between modes with large HR fac-

tors. It can be seen that the mixing of modes 38 and

39 is very prominent. There are two main features of

the azulene electron-vibrational coupling: first, the HR

factors of all modes are less than 1, which can be classi-

fied into the weak coupling regime; second, the HR fac-

tors of high frequency C−H vibrations above 3000 cm−1

are small and negligible. The largest HR factor of the

C−H vibrations is only 0.00126. In the displaced har-

monic oscillator model, the mode with an HR factor

of 0 (zero displacement) cannot be an accepting mode

because ⟨χfv|χiu⟩=δuv. Therefore, it can be expected

that the ability of C−H vibrations to receive energy is

weak on HA PES [59]. Hence, on HA PES, the C−H

vibrations can only play the role of promoting mode

triggering electronic transition. The projection of the

nonadiabatic coupling vector at the S0 optimized struc-

ture onto the S0 normal modes is shown in FIG. S1

(see Supplementary materials). The nonadiabatic cou-

pling constant is larger in the C−C vibrational region

and smaller in the C−H vibrational region. The Con-

don approximation is adopted to approximate NAC as

a constant independent of the nuclear structure.

Since the thermal energy kBT at room temperature

is small relative to the vibrational frequency, the initial

thermal equilibrium state is near the equilibrium posi-

tion of the excited state PES, and thus the anharmonic

effect of the excited state PES is expected to be rela-

tively small. On the contrary, according to the analysis

above, the anharmonic effect of the ground state PES

will be very significant. Therefore, we only consider

the anharmonicity of the ground state PES, while the

excited state is still approximated by HA PES. Along

the normal modes of S0 state, a 2-MR PES of the S0
state is constructed using MidasCPP software [60] in-

terfaced with Gaussian 16 [57]. The single-point calcu-

lations are still performed at the B3LYP/6-31G(d) level.

The adaptive density-guided approach (ADGA) is used

to adaptively select the single points to be computed,

which has the advantage of not requiring a predeter-

mined range of each coordinate to be scanned [61]. The

convergence of the PES obtained by ADGA is charac-

terized by the lowest seven modals for each mode com-

puted by VSCF. More details of the ADGA method can
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FIG. 4 (a) The HR factors of S0 normal modes (upper panel) and S1 normal modes (lower panel). (b) The Duschinsky
rotation matrix |Jij | between the S0 and S1 normal coordinates. The modes with large HR factors are highlighted by red
boxes.

TABLE I The reorganization energy calculated on different
levels of S0 PES.

Method λ/cm−1 Error/cm−1

Four-point method 3481.9

HA 3399.2 −82.7

1-MR 3421.4 −60.5

2-MR 3495.7 13.8

be found in Ref.[61]. The resulting n-MR PES is fitted

with a polynomial up to 12th order, as in Eq.(18). For

the 1-MR PES, a total of 665 single points are com-

puted; for the 2-MR PES, a total of 201,825 single

points are computed. The typical one-mode and two-

mode cuts of the PES are shown in FIG. 5. To verify

the accuracy of the n-MR PES, we compare the reorga-

nization energy λS0 of the constructed S0 PES. The ref-

erence energy is calculated by the so-called “four-point

method”. For λS0
, only two single-point calculations are

required, λS0=E(S0; S1 opt geom)−E(S0; S0 opt geom).

Table I shows that the error of the PES decreases as

the order of expansion increases.

We calculate the internal conversion rates on the HA,

1-MR and 2-MR PESs using TD-DMRG. All calcu-

lations are carried out with the open-source package

Renormalizer developed by us [62]. The time-step is

0.25 fs, with a total evolution time of 425 fs. The prim-

itive basis function for each mode is SHO basis up to 20

quanta (d=20). Table II lists kic at 0 K and 300 K with

different MS . At 300 K, the MPOs used for the TD-

DMRG calculations with MS≥40 are compressed to re-

duce the computational cost. The cutoff threshold used

in singular value decomposition (SVD) is ε=10−6 after

normalization of the singular values. With this cutoff,

the error introduced through MPO compression is neg-

ligible. Since the thermal vibration correlation function

(TVCF) method [24] (calculated using MOMAP pack-

age [58]) yields analytically exact solutions on HA PES,

they are also listed for comparison.

Because the directly calculated C(t) does not decay

to 0 after finite time, it is multiplied by a broadening

function C̃(t)=C(t)g(t) in the time domain. The phys-

ical origin of this broadening function may be static

disorder as well as dynamic disorder of the actual en-

vironment. Instead of a Lorentzian broadening func-

tion g(t)=exp(−ηt) with η=100 cm−1 used in our for-

mer work [30], here a Gaussian broadening function

g(t)=exp(−η2t2/2) with η=10 cm−1 is adopted. The

reason is that the Lorentzian broadening function has

a very long tail in the frequency domain, decaying with
1

π

η

∆ω2 + η2
(∆ω is the detuning frequency). As a re-

sult, it will take into account many states that severely

violate energy conservation but have large FC factors

(most are low energy states, which is evident in the

FSR rate calculation). This behavior, although possi-

ble in the condensed phase, is clearly against the phys-

ical picture in the calculations of the single molecule

model here. In comparison, the Gaussian broaden-

ing function decays exponentially in the frequency do-

main with
1√
2πη

exp

(
−∆ω2

2η2

)
, which can well satisfy

the energy conservation. The choice of the broadening

function and width has also been discussed in detail

in Humeniuk’s work [28]. For the same reason, they

also found that the Gaussian broadening function has a

small effect on the nonradiative transition rates, while
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FIG. 5 (a, b) The typical one-mode cuts of PES. The black circles are the ab initio points. The red line is the 1-MR energy
curve fitting the ab initio points. The blue line is harmonic potential. The dashed horizon lines are the lowest 10 energy
levels of the harmonic potential. (c, d) The typical two-mode cuts of PES. The solid contour is the 2-MR surface and the
dashed contour is the harmonic surface. The unit is cm−1.

TABLE II The internal conversion rate kic of azulene from S1 to S0 with harmonic PES, anharmonic 1-MR and 2-MR PESs
calculated by TD-DMRG with different bond dimension MS . The analytically exact results with harmonic PES calculated
by TVCF are also listed. A 100 cm−1 Gaussian broadening is applied.

Method kic/(10
10 s−1) at 0K kic/(10

10 s−1) at 300K

HA 1-MR 2-MR HA 1-MR 2-MR

TVCF 0.79 1.00

MS=10 0.60 1.27 2.92 0.78 1.65 3.80

MS=20 0.74 1.42 3.23 0.88 1.77 4.10

TD-DMRG MS=40 0.78 1.47 3.40 0.96 1.85 4.19

MS=60 0.79 1.47 3.54 0.97 1.86 4.37

MS=80 3.56 4.53

Relative value to HA 100% 186% 451% 100% 192% 467%

the Lorentzian broadening has a large effect on it. Since

the rate is related to the Gaussian broadening width, it

is not feasible to directly compare the computational

results with the experiments. Fortunately, it has little

effect on the relative change of the rate due to anhar-

monicity, which is the main focus of this work. From

the results in Table II, it shows that the TD-DMRG re-

sults converge very quickly with increasing MS . For the

mode-uncoupled HA PES and 1-MR PES, MS=40 is

enough (if 1% error is required). For the coupled 2-MR

PES, MS=80 will make the rate at 0 K converged, but

is still not enough for the rate at 300 K. On HA PES,

the numerical results of TD-DMRG can reproduce the

analytically exact results of TVCF. The rate on 1-MR

PES is about 200% of the rate on HA PES, indicat-

ing that the introduction of intramode anharmonicity

will prominently accelerate the rate of internal conver-

sion. More significantly, the coupling between modes
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FIG. 6 kic of azulene on the HA (black), 1-MR (red), and
2-MR (blue) PESs at different S0, S1 adiabatic energy gaps.
MS=60.

has a greater effect on the internal conversion rate: the

rate on 2-MR PES is about 500% of the rate on HA

PES. The physical picture of the quantitative results is

that the mode coupling accelerates the vibrational re-

laxation and therefore the dephasing of the wavepackets

on the excited and ground state PESs is much faster.

To some extent, this mode coupling effect is similar to

the Duschinsky rotation effect, both of which scramble

the normal modes.

Furthermore, we examine the magnitude of the an-

harmonic effect with different energy gaps. FIG. 6 plots

the internal conversion rates on HA, 1-MR, and 2-MR

PESs at 0 K and 300 K with different adiabatic energy

gaps ∆Ead. It shows that the size of the energy gap

is very important for the anharmonicity to take effect.

With a gap smaller than 1.6 eV, there is basically no

anharmonic effect. With the increase of the gap, the

anharmonic effect becomes more and more noticeable.

The internal conversion rate on HA PES decreases much

faster than that on anharmonic 1-/2-MR PES with the

increase of gap. This behavior, which has also been

reported in the study of model molecules [28], can be

reasoned in this way: the larger the gap, the higher the

energy level of the final vibrational state, and there-

fore the greater the anharmonic effect. Comparing the

1-MR and 2-MR PESs, the internal conversion rate on

2-MR PES is faster. However, with an energy gap larger

than 2.5 eV, the trend of the rate on 1-MR and 2-MR

PESs to decrease as the gap increases seems compara-

ble. In addition, at each energy gap, the anharmonic

effect does not differ much at different temperatures.

To analyze the specific effects due to anharmonic-

ity, the FSR internal conversion rates for the HA and

1-MR PESs are calculated at 0 K and 300 K. The

MPS/MPDM to represent |Xf(t)⟩ and ρi/f(t) in Eq.(25)

and Eq.(29) has MS=20, while MPSs to represent Γ(t)

and Ihalf have MΓ=150 at 0 K and MΓ=170 (1-MR),

MΓ=150 (HA) at 300 K. Two primitive basis functions

are used: one is SHO (used in HA PES), and the other

is modal from VSCF calculation (used in 1-MR PESs).

The size of primitive basis is d=10 (the difference com-

pared with d=20 is very small). Since MPS is com-

pressed in the calculation of Γ(t) and Ihalf, to verify

the accuracy, the total rate obtained by summing over

the FSR rates
∑
v

I is listed in Table S1 in Supplemen-

tary materials and the total rate obtained directly by

integrating C(t) (in Table II) is the reference. From

the comparison, the accuracy is sufficient for the later

analysis of the FSR internal conversion rates.

Based on the probability of different occupation num-

bers of each mode in Eq.(41) occurring in the total inter-

nal conversion process, the mean vibrational quantum

number and the mean accepting energy for each mode

are defined as

v̄l =
∑
vl

pvl
vl (42)

ϵ̄l =
∑
vl

pvl
ϵvl

(43)

where ϵvl is ωivi for the SHO basis function (not in-

cluding the zero-point energy) and is the energy of each

modal relative to the zero-point energy for the VSCF

modal basis function. v̄l on different PESs are shown

in FIG. 7 (black for 0 K, red for 300 K), in which the

total ϵ̄l of the 8 high-frequency C−H vibrations above

3000 cm−1 (
∑

ϵ̄C−H) are also listed. The convergence

of the mean vibrational quantum numbers with respect

to MΓ in Eq.(31) is shown in FIG. S2 (Supplementary

materials). For HA PES (upper panel), the modes with

large HR factors receive more energy and the corre-

sponding v̄l is larger. The main contributor, mode 38,

has the largest 2.7 mean vibrational quantum number,

while the high-frequency C−H vibrations with small HR

factors basically do not contribute, with a mean ac-

cepting energy of 1098 cm−1(0 K)/1090 cm−1(300 K),

which in the later analysis is attributed to the energy

received as a promoting mode. For 1-MR PES (lower

panel), v̄l in the C−C vibrational region decreases sig-

nificantly, with the largest (mode 38) being 2.0. This

is mainly due to the significantly enhanced contribu-

tion of C−H vibrations, whose mean accepting energy
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FIG. 7 The mean vibrational quantum number v̄l received
by each mode on the HA and 1-MR ground state PESs,
where HA uses SHO as the primitive basis function and 1-
MR uses VSCF modal as the primitive basis function. The
black is for 0 K and the red is for 300 K. The total mean ac-
cepting energy

∑
ϵ̄C-H of the C−H vibrations is also listed.

The horizontal blue line is a guide to the eye.

is increased to 5004 cm−1 (0 K)/4739 cm−1 (300 K).

Therefore, by introducing anharmonicity, the ability of

C−H vibrations to receive electronic energy is opened

up: on the original HA PES, C−H vibrations only re-

ceive less than 1/10 of the electronic excitation energy,

while they receive more than 1/4 of the electronic ex-

citation energy on the 1-MR PES. Since the C−H vi-

brations receive more energy, the quantum numbers of

the C−C vibrations decrease. Qualitatively, according

to that the FC factor between two displaced harmonic

oscillators is |⟨χi0|χfv⟩|2=
e−SSv

v!
and for azulene HR

factors are less than 1 (weak coupling regime), smaller

v results in a larger FC factor and thus a faster inter-

nal conversion rate after accounting for anharmonicity.

Comparing the mean vibrational quantum numbers at

0 K and 300 K, v̄l increases a lot with temperature in

the low-frequency region (ω<600 cm−1), while it re-

mains almost unchanged in the high-frequency region.

This is due to that only the low-frequency vibrations on

the excited state PES are thermally populated at room

temperature.

With the sampling algorithm described in the previ-

ous section, the dominant final vibrational states that

contribute the most to the total internal conversion rate

FIG. 8 The black bar is the rate of the top 1000 final con-
figurations among the sampled 5×105 configurations and
the blue curve is the rate-weighted density of states for the
5×105 final configurations (Eq.(44)) on HA PES with SHO
as the basis function and 1-MR PES with modal as the ba-
sis function. The vertical red line indicates the 0−0 gap
between the ground and excited states. The temperature is
0 K.

are analyzed. FIG. 8 plots the results of HA PES with

SHO basis and 1-MR PES with modal basis at 0 K.

A total of about 5×105 final state configurations are

sampled (the total number of configurations is 1048).

We found that the larger the MΓ, the more difficult

the sampling is to converge. For both HA and 1-MR

PESs, the contribution of the sampled configurations

accounts for 71% of the total rate. This is an indication

of the efficiency of our proposed sampling algorithm.

In addition, it shows that the 5×105 configurations are

sufficiently representative. The black bars in FIG. 8 are

the rates of the top 1000 sampled configurations with

the largest rates. Several configurations that contribute

the most are labeled next to the bar. The blue curve

is the rate-weighted density of states (DOS) calculated

by the 5×105 configurations (a Gaussian broadening of

10 cm−1 is used).

ρ(ω) =
∑
i

kiδ(ω − ωi) (44)
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The overall FSR internal conversion rates are increased

in the 1-MR PES compared to HA PES. For HA PES,

the configurations having a large rate are all composed

of excited vibrations with large HR factors. Among

them, the three configurations with the largest rates are

116130333438239, 116130333538139, 116230233438239 (the

subscript is the mode index). This result is consis-

tent with the previous statistics of the mean vibra-

tional quantum number. For the 1-MR PES, the three

configurations with the largest rates become 133138443,

133338346, 233238346 (the mode indices above 41 are all

C−H vibrational modes), demonstrating that the rates

of the final states with C−H vibrations excited increase

greatly after considering the anharmonicity.

The increase of vibrational DOS on the anharmonic

PES is also expected to be one factor that will in-

crease the total internal conversion rate, e.g., the DOS

of Morse potential becomes larger with energy. To fur-

ther distinguish whether the increase in the total inter-

nal conversion rate is due to the increase in the rate for

each individual final state or the increase in the vibra-

tional DOS, we calculate the DOS ρ(ω)=
∑
i

δ(ω − ωi)

for the sampled 5×105 states (using a 10 cm−1 Gaussian

broadening). Actually, the DOS calculated here is an

effective DOS, since only the sampled states with a not

too small rate are counted. FIG. 9 shows that the DOS

of HA PES is even larger than that of 1-MR PES. It

confirms that the rate increases on anharmonicity PES

are due to an increase in the rate of individual final

state, such as the rate of C−H excited configurations,

which originally have a small contribution on HA PES,

increase considerably after considering anharmonicity.

The following question is whether anharmonicity in-

creases the ability of the C−H vibration to act as an

accepting mode or a promoting mode. In the tradi-

tional understanding of the displaced harmonic oscilla-

tor model, since the C−H mode has an HR factor of

about 0, it cannot be an accepting mode. Same re-

sults have been obtained for real molecular PESs with

torsion and rotation [59]. To answer this question, we

turn off the ability of the C−H vibration as a promoting

mode, i.e., the nonadiabatic coupling constants of all 8

C−H modes are set to 0. If the anharmonicity enhances

the promoting ability of C−H vibration, the difference

between the rates on anharmonic and harmonic PESs

should be significantly reduced after turning off nonadi-

abatic coupling of the C−H vibrations. From the total

rates listed in Table III, although the total kic decreases

FIG. 9 Vibrational density of states ρ(ω)=
∑
i

δ(ω − ωi)

around energy gap for the sampled 5×105 configurations
on the HA (black), 1-MR (red) PESs. The vertical lines in-
dicate the 0−0 gap between the ground and excited states.
The temperature is 0 K.

after turning off NAC of C−H vibrations, the relative

value of kic on 1-MR and 2-MR PESs to that on HA

PES is qualitatively unchanged. In addition, the mean

accepting energy by C−H vibrations on 1-MR PESs,

which is the main factor on the change of internal con-

version rate, is also basically unchanged relative to that

of HA PES. Similarly, FIG. 10 shows that without nona-

diabatic coupling of C−H vibrations, v̄l of each mode

on the 1-MR PES does not change much compared to

that with C−H nonadiabatic coupling. The situation is

similar for the HA PES (see FIG. S3 in Supplementary

materials). These results demonstrate that the anhar-

monicity mainly enhances the accepting ability of C−H

vibrations, even though the HR factor is ∼0. Without

anharmonicity, the C−H vibrations can only be the pro-

moting mode, because
∑

ϵ̄C−H on HA PES decreases

significantly from 1098 cm−1 to 225 cm−1 after turning

off nonadiabatic coupling of C−H vibrations.

We expect this specific anharmonic effect related to

C−H vibrations to be general for the internal conversion

process of hydrocarbon compounds, at least for small-

sized and medium-sized molecules. In experiments, it

has already been observed that the number of C−H vi-

brations is very important to the nonradiative decay

rate of hydrocarbons [63]. The most direct experimen-

tal verification of the effect of C−H vibrations on the

nonradiative transition is the deuterium effect. When

H is replaced by D, the frequency of the C−D vibra-

tion decreases, and thus the energy received by the

same vibrational quantum number of C−D vibrations

decreases. Therefore, the efficiency of C−H vibrations

to accept energy is reduced and thus the rate of the non-
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TABLE III The internal conversion rate and mean accepting energy of C−H vibrations on HA, 1-MR and 2-MR PESs with
and without nonadiabatic coupling (NAC) of C−H vibrations at 0 K (MS=20, d=10). The values in parentheses are relative
to HA.

PES kic/(10
10 s−1)

∑
ϵ̄C−H/cm

−1

with C−H NAC without C−H NAC with C−H NAC without C−H NAC

HA 0.73 0.53 1098 225

1-MR 1.42 (195%) 1.09 (206%) 5004 (3906) 4404 (4179)

2-MR 3.25 (445%) 2.62 (494%)

FIG. 10 The mean vibrational quantum number of each
mode with (black) or without (red) the nonadiabatic cou-
pling of C−H vibrations on the 1-MR PES. The temperature
is 0 K.

radiative transition is expected to decrease. As early as

the 1960s, experimental studies found that the lifetime

of the triplet state of molecules such as naphthalene

has a very pronounced deuterium effect. The lifetime

of deuterated naphthalene becomes longer at low tem-

peratures [64], and many aromatic compounds other

than naphthalene have similar phenomena [65]. The-

oretically, the isotope effect of nonradiative transition

rate has also been discussed qualitatively by Lin [66]

and Jortner et al. [17]. According to the analytical rate

expression of the displaced harmonic oscillator model

under weak electron-vibrational coupling, the nonradia-

tive transition rate is mainly determined by the highest-

frequency mode with a nonzero HR factor; and the

higher the frequency, the faster the rate is. Therefore,

under the assumption that the HR factor of C−H vibra-

tions is not zero, it does exhibit a significant deuterium

effect. What we find in this study is that for molecules

like azulene, its C−H vibration can still get involved

in nonradiative transition even though the HR factor is

close to 0, and thus the molecule is expected to exhibit

the deuterium effect as well. In addition, it was also

found experimentally in naphthalene and acetophenone

that the magnitude of deuterium effect only depends on

the number of deuterium regardless of the substitution

position [66]. According to the phenomena, Lin et al.

qualitatively classified the C−H vibrations into the ac-

cepting modes, because if C−H vibrations are used as

promoting modes, nonadiabatic coupling may be sen-

sitive to the positions of deuteration as the wavefunc-

tion varies over the molecule. On the contrary, due to

the local nature of C−H vibrations, the C−H vibra-

tional wavefunctions at different positions are similar

and thus have similar abilities as accepting modes [66].

Our current quantitative calculations at ab initio level

verify that the C−H modes are the accepting modes.

However, it should also be noted that both experimen-

tal and theoretical studies showed that there is a low

energy conical intersection between S1 and S0 PESs in

azulene, which is also important for the internal con-

version process [55, 67, 68]. The few nonadiabatic dy-

namics studies based on the trajectory surface hopping

method have obtained an S1 lifetime of 10 fs, which is

much shorter than the experimental value [67]. There-

fore, further theoretical studies are needed to properly

understand the S1 to S0 internal conversion process in

azulene. Perhaps the contributions of both channels in

the FC and CI regions need to be considered [69].

IV. CONCLUSION AND OUTLOOK

To summarize, we present the methodology to cal-

culate the internal conversion rate of real polyatomic

molecules with an anharmonic potential energy surface

at ab initio level in the Franck-Condon region by com-

bining the n-MR method to construct PES and the TD-

DMRG method to simulate quantum dynamics. Fur-

thermore, a method to calculate the final-state-resolved

rate coefficient is proposed, which is numerically exact

for the uncoupled PES of the final state and helps in

the analysis of the internal conversion process. Tak-

ing the semi-rigid azulene molecule as an example, we

compare and discuss in detail its internal conversion
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rates on the harmonic potential, 1-MR potential, and

2-MR potential. We find that the anharmonic effect

opens up the ability of the C−H vibration to receive

electronic energy. Because the frequency of the C−H

vibration is larger than that of the C−C vibration, the

efficiency of receiving energy is higher. In the weak

electron-vibrational coupling regime (Si<1), it is able

to increase the Franck-Condon factor and thus increase

the internal conversion rate. Given that the C−H vibra-

tions are quite local, we expect this anharmonic effect

to be prevalent in small-sized hydrocarbon compounds

(small number of C−C vibrations). Whether this an-

harmonic effect is still present in large-sized hydrocar-

bon compounds (large number of C−C vibrations) de-

serves further investigation. Additionally, whether the

2-MR PES is accurate enough for rate calculations is

unknown due to that 3-MR is too expensive to con-

struct for such a system. There is still hope to com-

bine with deep learning methods to reduce the number

of single-point calculations and obtain higher order of

n-MR PES. Finally, the current method uses only recti-

linear normal coordinates, which is not appropriate for

very flexible molecules. Therefore, it is worth exploring

a theoretical framework and computational method for

nonradiative transition rate based on curvilinear coor-

dinates.
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