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ABSTRACT: Using a photonic quantum computer for boson
sampling has demonstrated a tremendous advantage over classical
supercomputers. It is highly desirable to develop boson sampling
algorithms for realistic scientific problems. In this work, we propose a
hybrid quantum-classical sampling (HQCS) algorithm to calculate
the optical spectrum for complex molecules considering Duschinsky
rotation effects and anharmonicity. The classical sum-over-states
method for this problem has a computational complexity that
exponentially increases with system size. The HQCS algorithm
creates an intermediate harmonic potential energy surface (PES) to
bridge the initial and final PESs. The magnitude and sign of the
overlap between the initial and the intermediate state are estimated
by boson sampling and classical algorithms, respectively. The overlap
between the intermediate and the final state is efficiently evaluated by
classical algorithms. The feasibility of HQCS is demonstrated in calculations of the emission spectrum of a Morse model as well as
the pyridine molecule.

In the early 1980s, Feynman proposed quantum computa-
tion as a natural solution for many-body problems too hard

for classical computers.1 Since then, many quantum algorithms
have been devised to solve classically hard problems. However,
the presently known methods such as Shor’s algorithm2 for
factorization and quantum phase estimation (QPE)3 for the
eigenvalue problems require an error-tolerant quantum
computer, which will not be available in the near future.
Variational quantum algorithms4 hybridizing classical and
quantum computation are regarded as a practical choice for
quantum computation applications with the current noisy
intermediate-scale quantum (NISQ) device. On the other
hand, quantum computational advantage has been reported
through quantum sampling algorithms such as random circuit
sampling,5 boson sampling,6,7 and its variant, Gaussian boson
sampling (GBS).8−11 In the last year, the quantum computer
“Jiu Zhang 2.0”9,10 performed GBS on an 1043 large Hilbert
space which was shown to be 1024 faster than a brute-force
simulation on state-of-the-art classical computers. Recently, the
boundary of quantum advantage of GBS was identified,12 and
the evidence for the hardness of GBS was provided.13

Currently, it is valuable to develop algorithms that profit
from the quantum computational advantage of the quantum
sampling algorithms and devices to solve real-world problems.
Here, we focus on the computation of a molecular

vibrationally resolved electronic spectrum taking both the

Duschinsky rotation (DR) and anharmonicity into account.
DR refers to the mode mixing between normal vibrational
modes on the initial and final potential energy surface (PES)
for the electron transition.14−16 It helps to more accurately
characterize the difference between the initial and final PES
rather than just considering the displacement between the two
equilibrium geometries along each mode. Meanwhile, it
couples the vibrational modes and thus results in entangled
many-body problems that need to be solved in the whole
Hilbert space, which is exponentially large with the number of
modes. Several experimental17−21 and theoretical22,23 works
have focused on the simulation of the molecular spectrum with
the DR effect and under harmonic approximation using the
boson sampling algorithms. Those works proposed to solve
this problem through the time-independent (TI) approach,
which is hard for classical computers with brute force.24,25

However, it should be noted that, through the time-dependent
(TD) approach, such a problem has been solved exactly and
analytically on classical computers by Peng et al. back in 2007,
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and this approach was named the thermal vibration correlation
function (TVCF) method.15,26 Over the years, TVCF has been
successfully used to simulate vibrationally resolved electronic
spectra of complex real-world molecules.27−29 Hence, we
believe quantum computation could hardly outperform
classical computation in a problem already classically efficient.
Besides the DR effect, the anharmonic effect on the molecular
spectrum has also been found to be very important in general
for complex molecules, especially for flexible molecules.30−32

To calculate the spectrum with both anharmonicity and DR is
indeed a hard problem for classical algorithms because
generally there is no analytical solution and the brute-force
numerical approach has an exponential scaling with the
number of modes. Therefore, it is necessary to develop
quantum algorithms for such a problem, while no near-term
solution has been proposed yet. The previously suggested
boson sampling algorithms can only simulate Franck−Condon
factors (FCFs) between harmonic states, so they are not
suitable for the anharmonic spectrum. QPE based solutions
have been reported to calculate the anharmonic spectrum33

but are unable to realize with the NISQ device. The quantum
simulation of quantum dynamics could be another approach
toward the spectrum. Recently, a workflow was proposed to
solve the condensed-phase spectrum through this approach.34

Meanwhile, the vibrations are considered from the nuclear
motion in classical molecular dynamics. Vibrational relaxation
of the anharmonic Hamiltonian using vibrational perturbation
theory to consider influence from all third derivatives and the
semidiagonal quartic derivatives had been simulated using
nonlinear optics in analogue quantum simulation,35 but this
method cannot deal with more general anharmonic PES.
Generally, we should perform a quantum simulation with
enough time for a converged spectrum. The accumulation of
the error as the simulation time becomes longer could be a
potential problem for long-time quantum simulations without
error correction schemes.36,37

In this work, we propose a hybrid quantum-classical
sampling (HQCS) algorithm to calculate the molecular
vibrationally resolved electronic spectrum, including both the
anharmonic effect and the DR effect. We first present an
analysis of the computational complexity for this classically
hard problem. Second, we will describe the HQCS algorithm
in detail, which includes three subcomponents. The effective-
ness of this HQCS algorithm is then demonstrated by
calculating the emission spectrum of a 2-mode model as well
as a pyridine molecule using a simulator for a photonic
quantum computer. We believe that the real quantum device
can accelerate the calculations in the near term.
The molecular vibrationally resolved electronic spectrum is

commonly calculated under the Born−Oppenheimer approx-
imation,38 in which two adiabatic electronic states are
considered, denoted with subscript “i/f” for the initial/final
electronic state (symbols without a subscript refer to a general
state). With mass-weighted rectilinear coordinates, the
Hamiltonian can be expressed as
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where N is the total number of modes. q ≡{q1, q2, ..., qN}
indicates that the PES V is a multidimensional function. For
semi-rigid molecules, it is preferred to express PES in the
normal coordinates, because the mode coupling in this

coordinate system is minimized. The two sets of normal
coordinates of the initial and final PESs are related by the DR
matrix S and the normal-mode-projected displacement Δq.

q Sq qf i f= + (2)

The lowest order approximation to PES is the harmonic
approximation,

V q V1
2n

n n
2 2

eq= +
(3)

Beyond that, the PES can be hierarchically expanded as 1-
mode terms, 2-mode terms, 3-mode terms, etc., which is known
as the n-mode representation (n-MR).39,40 In this work, we
only consider 1-MR PES, in which the intramode anharmo-
nicity is included and the modes are still independent of one
another.

V V q V( )
n

n n eq= +
(4)

With Fermi’s golden rule and Condon’s approximation, the
optical transition rate at zero temperature is

E

E E E
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abs/emi if
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i i f f
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f, i,

f

f

f
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+ (5)
v

i/f
i/f| is the initial/final vibrational state with configuration vi/f.

μif is the transition dipole moment. At zero temperature, the
harmonic approximation is reasonable for Vi but is
inappropriate for Vf, because the optical transition starts
from the equilibrium geometry of the initial state, which,
however, could be far from the equilibrium geometry of the
final state if the electron-vibration coupling is large. Therefore,
in this work, Vi is described by a harmonic PES (eq 3) and Vf is
described by a 1-MR PES (eq 4).
Unlike the harmonic spectrum with an analytical solution,

no accurate and efficient classical algorithm for the anharmonic
spectrum has been proposed yet to calculate eq 5. The
computational cost of the sum-over-states algorithm will
exponentially increase with the system size for the following
two reasons. First, the numerical multidimensional integration
of each FCF |⟨ϕi(qi)|ϕf(qf)⟩|2 generally has a computational
cost exponential with the number of entangled modes on the
classical computer. Second, the summation over vf is also an
exponentially hard problem for classical computers, because
the Hilbert space increases exponentially with the system size
(if d vibrational states are considered in each of the N modes,
the number of vf is dN). Here, we propose a hybrid quantum-
classical sampling (HQCS) algorithm to speed up these two
exponentially hard problems.
The key to the HQCS algorithm is to build an intermediate

harmonic PES, V qn n nm
1
2 m,

2
m,

2= , and insert its complete

eigenbasis set into eq 5. q( )0
i i| and q( )v

m m
m| are harmonic

wave functions, and q( )v
f f

f| is the anharmonic wave function.
We call q q( ) ( )0 v

i i m m
m| the harmonic overlap and

q q( ) ( )v v
m m f f

m f| the anharmonic overlap.
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It seems that the evaluation of eq 6 is even more complicated
compared to eq 5. But, with a smart choice of the parameters
of the intermediate PES and taking advantage of both quantum
and classical sampling algorithms, eq 6 can be efficiently
calculated. The two requirements of Vm are
(i) ωm,n = max(ωf,n, ωi,n);
(ii) qm = qf.
With this intermediate PES, there are three steps to evaluate eq
6, which are

1. estimation of q q( ) ( )0 v
i i m m

m| ;
2. estimation of q q( ) ( )v v

m m f f
m f| ;

3. summation over vm and vf.
Figure 1 shows a schematic flowchart of HQCS. The first
requirement is the key to approximating the sign of

q q( ) ( )0 v
i i m m

m| . The second requirement is to make the
estimation of q q( ) ( )v v

m m f f
m f| much more efficient. In the

following, we replace qm with qf for simplicity. The Dirac delta
function in eq 6 is broadened with the Gaussian function

E E E( ) ev 0f, i,

E E E0 v

f

( i, f, f )2

2 2+
+

.
The first step is the estimation of harmonic overlap

q q( ) ( )0 v
i i m f

m| . Here we calculate the magnitude using
boson sampling on a quantum device, and we calculate the sign
(−1 or +1) using a classical algorithm. The Doktorov unitary
operator UDok describes the transformation from a harmonic
state expressed on its normal coordinates to the same state
expressed on another set of normal coordinates.41,42 The
expression of UDok can be found in the literature

43,44 (see the
Supporting Information for more details). Hence, the FCFs
can be expressed as

q q R R

R U R

( ) ( ) ( ) ( )

( ) ( )

0 v 0 v

0 v

i i m f
2

i i m f
2

i f Dok m f
2

m m

m

| | | = | | |

= | | | | (7)

where R is the dimensionless normal coordinates. (R q1/2=
and ϕ(q) = φ(R).) The right-hand side of eq 7 can be
interpreted as the sampling probability P of one specific output
harmonic state v

m
m| for an input harmonic state 0

i| passing
through an interferometer accounted by unitary transformation
UDok during the boson sampling process. So, the boson
sampling22,23 can be used here. The sampling probabilities
Pv vi m

correspond to the magnitude of FCFs as

Pq q( ) ( )0 v
0 vi i m f

m
m

| | | = (8)

The next part is to approximate the sign. Previous works45,46

have derived an analytic expression of the overlap between two
one-mode harmonic wave functions |χ(q)⟩.The detailed
analytic expression at zero temperature is given in Appendix
A. From this expression and as ωm,n = max(ωf,n, ωi,n) ≥ ωi,n, the
sign of the overlap can be calculated as eq 9.

q q qsgn( ( ) ( ) ) (sgn( ))n n n
v

n n
v

i,
0

f, m, i, f,
n nm, m,| = (9)

Thus, for N-mode problems without DR,

qq qsgn( ( ) ( ) ) (sgn( ))
n

N

n
v0 v

i i m f f,
nm m,| =

(10)

With DR, the factorized formula above is not exact anymore.
However, if DR only occurs between modes with the same
frequency, it will not change the sign of the overlap because the
amplitude of the nodeless initial ground vibrational state is
always positive. Fortunately, in molecular systems, DR
commonly occurs within groups of modes having close
frequencies.47 Therefore, it can be speculated that DR could
hardly flip the sign of the overlap, and thus eq 10 is still a good
approximation. To verify the assumption, we calculate the sign
of a two-mode and a four-mode model numerically in the
Supporting Information and quantify the error of this step in
each model used in this work. The results show that the
assumption is quite reliable. However, it should be noted that
this approximation to the sign of the overlap is only reliable for
the ground vibrational state as the initial state, which limits our
algorithm to the zero temperature case currently.
The second step is the estimation of anharmonic overlap

q q( ) ( )v v
m f f f

m f| . As the coordinates of v
m

m and v
f

f are the
same and the modes are assumed to be independent, we have

q qq q( ) ( ) ( ) ( )
n

v
n

v
n

v v
m f f f m f, f f,

n nm f m, f,| = |
(11)

where q q( ) ( )v
n

v
nm f, f f,

n nm, f,| is a one-dimensional problem and
thus is quite easy to calculate on classical computers.

q( )v
nm m,

nm,| is a one-mode harmonic wave function with

analytical expression and q( )v
nf f,

nf,| ) is a one-mode anhar-
monic wave function, which can be efficiently solved
numerically. Practically, we use the harmonic states v

m
nm,{| }

with a cutoff on vm,n as the primitive basis set. Then we can
obtain the corresponding discrete variable representation
(DVR) basis set48 and the transformation matrix between
the primitive harmonic basis and the DVR basis. The matrix

Figure 1. Schematic flowchart of the Hybrid Quantum-Classical
Sampling algorithm calculating the optical spectroscopy for the
transition from harmonic PES Vi to anharmonic and Duschinsky-
rotated PES Vf by introducing a harmonic and Duschinsky-rotated
PES Vm. Blue steps are performed on the quantum device, while
yellow steps are performed on the classical computer.
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elements of H V q( )n q n nf,
1
2 f, f,

n

2

f,
2= + can be first expanded in

DVR basis and then transformed to the primitive harmonic
basis. Through exact diagonalizaiton of this Hamiltonian, the
eigenstates v

f
nf,{| } are obtained, and their overlaps with the

primitive basis are also obtained. For an N-mode system with d
basis functions for each mode, the cost of the current substep
has a linear scaling with the system size, i.e., O(Nd3). It should
be noted that although the total number of the anharmonic
overlap q q( ) ( )v v

m f f f
m f| grows exponentially with the

number of modes, only the dominant elements sampled out
in the last step actually need to be calculated.
The last step is the summation over vm and vf in eq 6.

Although the total numbers of vm and vf both grow
exponentially with the system size, in realistic systems only a
small portion of the vibrational states with large FCFs
determine the vibrational structure in the electronic
spectrum.24,25 Because the boson sampling will naturally
screen out vm with dominant 0 v

i m
2m| | | , the summation

over vm in eq 6 will be classically efficient. Given a specific vm,

the dominant vf can also be obtained according to the weight

n
v

n
v

m, f,
2n nm, f,| | | by a classical sampling (CS) algorithm. A

schematic flowchart of CS is shown in Figure 2. It consists
of ΩCS sampling times. Among each time, a weighted random
sampling is first performed for the intermediate vibrational
state configuration vm = (..., vm,n, ...) with the weight

0 v
i m

2m| | | from the boson sampling result. Then, given one
vm, another group of weighted random samplings are carried
out for all vf,n with the weight n

v
n

v
m, f,

2n nm, f,| | | calculated in the
second step. After each loop, the newly appeared vf = (..., vf,n,
...) will be collected. The eventual summations over vf are done
only for those sampled out. The upper bound of the number of
summations is O(MmMf), where Mm/f are the number of
intermediate/final state configurations sampled by boson
sampling/CS.
For some complex molecules, we may need to sample some

small probability events to achieve high resolution on the
spectrum. In those cases, a tunable bias k ≥ 1 can be added to

the weight for CS such that P v v( )n nf, m,
n

v n
n

v n k

v n n
v n

n
v n k

m,
m,

f,
f, 2/

f, m,
m,

f,
f, 2/| =

| | |

| | |
and

Figure 2. Schematic flowchart of the classical sampling step used in HQCS.

Figure 3. (a) Emission spectrum of the two-mode Morse model. The reference spectrum produced by TD-DMRG is shown on the bottom panel
(dashed lines). On the top (solid lines) are results produced by HQCS. Different θ values are used to characterize the Duschinsky rotation effects.
The intensity is normalized by the highest peak in the θ = 0 spectrum. Inset is the schematic PES along one mode of the two-mode Morse model.
The initial excited state PES Ve,HA is harmonic (top thick line), and the final ground state PES Vg,Morse is Morse (bottom thick line). Performing
harmonic approximation on Vg,Morse at the equilibrium point, we obtain Vg,HA (bottom thin line), which is used as the intermediate PES. (b)
Benchmark for the convergence of basis size dBS of each mode (upper panel, ΩBS = 104 for all cases) and the boson sampling times ΩBS (bottom
panel, dBS = 5 for all cases) in the boson sampling process.
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P v( )m

k

k

v v

v
v v

m
m

f
f 2/

m m
m

f
f 2/= | | |

| | |
. We call it enhanced classical sampling

(ECS) because it enhances the probability of sampling small
probability events.
To validate the HQCS algorithm, we use the python

packages “strawberry fields”49 and “Walrus”50 to simulate the
quantum boson sampling on classical computers. The results
are compared with the reference spectrum calculated by the
nearly exact time-dependent density matrix renormalization
group (TD-DMRG) method with the package Renormalizer51

developed by our group; a brief introduction is in Appendix B.
We calculate the emission spectrum of a two-mode model with
initial excited state PES Vi as the harmonic potential and the
final ground state PES Vf as the Morse potential. The
intermediate PES Vm is obtained by performing the harmonic
expansion at the equilibrium point on the Morse potential Vf.
This model has been previously used to investigate the
anharmonic effect on the internal conversion process.52,53 The
DR matrix S between the PESs parametrized by an angle θ is
used to characterize the rotation between normal modes. More
detailed parameters to construct the model, perform the
HQCS calculation, and obtain the TD-DMRG reference in
these two-mode models can be seen in the Supporting
Information.

S
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sin cos

=
Ä
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ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ (12)

In Figure 3a, the spectra from HQCS with different θ values
are shown and compared with those of the TD-DMRG
reference. Whether θ is 0, π/4, or π/2, the HQCS algorithm
reproduces the results of TD-DMRG quite well. In Figure 3b,
we explore the convergence of the basis size dBS (cutoff of
quanta on each mode) and sampling times ΩBS for boson
sampling in HQCS. We find ΩBS = 104 used here is enough
while dBS = 15 used here is slightly insufficient in the low
energy regime. This explains the tiny deviation between HQCS
and TD-DMRG in the low energy regime in Figure 3a.
Moreover, we compare the sign approximated with the exact
sign of the harmonic overlap from the exact diagonalization.
We find the sign approximation method gives the correct sign

of all involved harmonic overlaps within the basis size here.
The number of signs to be compared is too high, and we have
not listed them here. Similar comparisons with every exact
overlap detail shown can be seen in the Supporting
Information.
Furthermore, we move to the real molecular system: the S1

to S0 emission spectrum of pyridine. Previous studies used the
perturbation method54 to investigate the anharmonic effect of
PES on the emission spectrum in this system. In our
calculations, the electronic structure of pyridine and normal-
mode analysis are calculated at the B3LYP/6-31g(d) level with
Gaussian 16 package.55 Following that, the DR matrix S and
the displacement Δq are calculated by the program MOMAP29
developed by our group. For the anharmonicity, 1-MR S0 PES
fitted with polynomial functions up to 12th order is
constructed by the adaptive density-guided approach imple-
mented in MidasCpp developed by Christiansen et al.56 From
a total of 27 normal modes, we select 7 important modes
involving large displacements or the DR effect for the HQCS
simulation. For the rest of the 20 modes, we only consider the
difference in their zero-point energies of S0 and S1 PESs that
shift the spectrum. Detailed information on electronic
structure calculation of pyridine and the selection of important
modes is given in the Supporting Information. There, the
reduced 7-mode model is demonstrated to be sufficient for the
emission spectrum of pyridine.
Limited by the capability of the classical simulator for boson

sampling, we set dBS = 5 for each mode and sampling times ΩBS
= 105 for boson sampling in HQCS here. The simulated
emission spectrum from HQCS is shown in Figure 4a and
compared with the TD-DMRG result (the experimental
fluorescence spectrum57 is also shown). It shows that HQCS
can well reproduce the features in the spectrum while small
deviations can be found in the low energy area. In Figure 4b,
we find both the largest dBS = 5 and the largest ΩBS = 105 we
can afford currently for classical simulation of boson sampling
with no convergence. This may explain the deviations in the
low energy area, similar to the case of the Morse model above.
Other potential error sources are sign approximation and

classical sampling. First, we compare the approximated sign

Figure 4. (a) S1 to S0 emission spectrum of pyridine calculated with HQCS (red solid line) and the reference result obtained by TD-DMRG (black
dashed line). The anharmonic S0 is approximated using 1-MR PES. The final state configurations vf are sampled by CS with 104 loop times;
altogether Mf = 936 different configurations of vf are sampled out based on Mm = 1806 configurations of vm sampled by boson sampling. The
experimental result (“Experimental”, black dotted curves) is also shown. The spectrum is normalized with their highest peak. The theoretical
(HQCS and TD-DMRG) results have been blue-shifted by 1350 cm−1 for better correspondence. (b) Benchmark for the convergence of basis size
dBS on each mode (upper panel, ΩBS = 104 for all) and the boson sampling times ΩBS (bottom panel, dBS = 5 for all) in the boson sampling process.
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with the sign of the exact harmonic overlap produced by the
ground state DMRG calculation. (We optimize the lowest
vibrational state on the electronic excited state using the
harmonic vibrational states at the electronic ground state as the
basis. Then the coefficient optimized for each basis function
corresponds to the overlap.) With the error defined in eq 13,
we calculate the summation of FCFs whose sign is incorrectly
approximated. The maximum error should be one and the
minimum error should be zero.The calculated error in pyridine
is only around 10−5.

q q q

q q
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i m m f

2
f m

m m f= | | | | to measure whether
the classical sampling process is converged. Table 1 shows

the results with different ΩCS values. The results indicate that
the summation over 936 final configurations vf from CS after
104 sampling times and with 1806 intermediate configurations
vm from the boson sampling can already give a quantitatively
correct spectrum (the deviation is less than 5%). It should be
noted that the size of the final configuration space for sampling
is 107 (10 quanta for each of the 7 modes). Namely, the HQCS
algorithm can vastly reduce the computational cost for the
summation.
Now, we are confident that the error from both sign

approximation and classical sampling are negligible in this
pyridine case. As the insufficient quanta and limited sampling
times of boson sampling are confirmed as the dominant error
source, the errors are expected to reduce with a real boson
sampling device, which can efficiency simulate enough quanta
on each mode and sampling times. Nowadays, the real
quantum sampling device can simulate systems with even more
modes. So in Appendix C, we also give a short discussion on
the scalability of sampling algorithms used.
To perform the HQCS algorithm on an actual photonic

quantum device, more error sources including photon loss,
noise, and distinguishability18 should be considered. In this
work, we focus on the 1-MR potential expressed on the normal
mode coordinates. In real molecules, there may exist more
complex situations where the anharmonic crossing terms
between the normal modes are hard to ignore. We consider
that a direct but less efficient treatment is to diagonalize those
modes as a whole. Another system specific treatment is finding
another coordinate system where the anharmonic crossing
terms are small like what has been done by former studies to
handle the rotation potential.32,58 It will have many crossing
terms if it is expressed with normal mode coordinates

In conclusion, we have proposed a hybrid quantum-classical
sampling algorithm, combining the boson sampling on
quantum devices and the classical sampling on classical
computers, for simulating molecular vibrationally resolved
electronic spectroscopy including both the Duschinsky
rotation effect and the anharmonicity. Although the current
algorithm is only for the zero temperature case and
independent modes, the simplified problem is still classically
hard. The effectiveness of the HQCS algorithm is demon-
strated in a two-mode Morse potential model and pyridine
molecule by comparing with the nearly exact TD-DMRG
method. Moreover, as we have intentionally designed the
HQCS algorithm to contain only one step of boson sampling
that is already realized in many platforms17−20 and three other
steps on robust classical computers, we suggest HQCS is a
practical near-term quantum simulation scheme to achieve
quantum computational advantage for molecular spectroscopy
and boost related photophysical and photochemical research.

■ APPENDIX A: ANALYTICAL EXPRESSION OF THE
OVERLAP BETWEEN ONE-DIMENSIONAL
HARMONIC STATES
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where βi = ωi/ℏ and l are non-negative integers meeting the
condition l ≤ vm. As the Γ-function is always non-negative and
Cl is non-negative when ωm,n ≥ ωi,n, the sign of the overlap
only depends on the sign of the displacement Δqf and the
quanta vm of the intermediate state.

■ APPENDIX B: TIME CORRELATION FUNCTION
FORMALISM OF THE SPECTRUM

The spectra from TD-DMRG for the benchmark are obtained
from the time correlation function (TCF) formalism. Here we
will give a brief introduction. Detailed derivations can be seen
from our former works.59,60 Performing a Fourier transform of
the delta function in eq 5 and then removing the completeness
relation I q q( ) ( )v

v v
f f f ff

f f= | |, we can obtain the TCF
formalism as eq 16. By TD-DMRG, the TCF C(t) is first
calculated within a finite time period and then is Fourier
transformed to obtain the spectrum.
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Table 1. Comparison between the Results from Different
Sampling Times ΩCS of Classical Sampling

ΩCS Mf η
101 10 0.97
102 78 0.64
103 359 0.18
104 936 0.031
105 1797 0.004
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■ APPENDIX C: SCALABILITY OF THE SAMPLING
ALGORITHM

Though the HQCS algorithm is universal, its efficiency
depends on the system. The scalability of quantum boson
sampling and classical sampling in our HQCS algorithm is
discussed. Inspired by the central limit theorem used by former
works,22 we assume the spectrum is in the normal distribution
characterized by a mean energy Eμ indicating the center of the
spectrum and a deviation variance σ proportional to the full
width at half-maximum (FWHM) of the whole spectrum (for a
normal distribution, FWHM 2 2 ln 2= ). Here, the stand-
ard error of the mean (center of the spectrum) sampled is
related to the sampling times Ω by /SE = . To keep ϵSE
a small constant, Ω should be proportional to σ2. This indicates
that as long as the width of the spectrum remains the same, the
sampling times required to keep a given ϵSE will not increase
even when the system size N grows. A practical case requiring
larger sampling times is the spectrum for the low-frequency
mode with a very large Huang−Rhy factor. The FWHM of the
spectrum could be similar to the high-frequency mode with a
smaller Huang−Rhy factor. Meanwhile, the ϵSE should be
smaller to distinguish between the vibrational structures on the
spectrum. Thus, more sampling times are required. We
consider this result to be consistent with experience. For the
low-frequency mode with a very large Huang−Rhy factor,
many configurations could have FCFs of similar magnitude. In
this case, more configurations are needed to be sampled, so the
efficiency decreases. The width of the sampled spectrum can
be evaluated through the corrected sample standard deviation

s E E( )i i
1

1 1
2= = , where Ei is the emission/

absorption energy on the spectrum for the configuration
from ith sample. (Ω − 1)s2/σ2 is in a chi-squares distribution,
which has only one parameter, Ω. Its confidence interval at a
designated confidence level (for example, 95%) is only
determined by the sampling times as Umin(Ω) < (Ω − 1)s2/
σ2 < Umax(Ω). Thus, we take the sampling times required
should hold still to keep s/σ in a constant confidence interval
in different systems.
Moreover, for classical sampling we found the sampling

efficiency becomes lower in larger systems, probably from its
two-step procedure. Meanwhile, the ECS helps to increase the
efficiency for those larger systems. A numerical example for the
ECS to increase the efficiency has been shown in the
Supporting Information.
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