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Organic molecular materials are potential high-performance thermoelectric materials. Theoretical understand-
ing of thermoelectric conversion in organic materials is essential for rational molecular design for efficient
energy conversion materials. In organic materials, nonlocal electron-phonon coupling plays a vital role in
charge transport and leads to complex transport mechanisms, including hopping, phonon assisted, band, and
transient localization. In this work, based on the time-dependent density matrix renormalization group method,
we look at the role of nonlocal electron-phonon coupling on the thermoelectric conversion in organic systems
described by the Holstein-Peierls model. We calculate the current-current correlation and the heat current-current
correlation functions. We find that (i) nonlocal electron-phonon coupling has a very weak influence on the
Seebeck coefficient because of the cancellation between the heat current-current correlation function and the
current-current correlation function, but it has a strong influence on the conductivity through dynamic disorders;
and (ii) doping concentration has a strong influence on both the conductivity and Seebeck coefficient, and the
optimal doping ratio to reach the highest power factor is 3%–10% fillings when the Holstein-Peierls model is
valid. These findings suggest that we can design organic materials with higher power factors by first enhancing
mobility through rational design, and then searching for the optimal doping ratio.

DOI: 10.1103/PhysRevB.110.035201

I. INTRODUCTION

Organic materials hold immense potential for next-
generation thermoelectric devices [1–7], prompting signifi-
cant research efforts towards designing high-performance or-
ganic thermoelectric materials over the past decade [5,8–11].
The figure of merit (ZT ) of organic materials at room temper-
ature has been improved by more than one order of magnitude
in the past decades [12–16]. The ZT value, which measures
the performance of thermoelectric materials, is defined as
ZT = α2 σT

κe + κL
, where α, σ , T , and κe (κL) represent the

Seebeck coefficient, electrical conductivity, temperature, and
electrical and (lattice) thermal conductivity. The rapid im-
provement in ZT can be attributed to the ingenious concept
named “electron crystal, phonon glass” [6], which emphasizes
the independent control of the lattice thermal conductivity and
the electrical conductivity. Along this line, numerous tech-
niques have been proposed [17]. However, the ZT values of
organic materials are still low, which limits application. One
restriction is that the conductivity and Seebeck coefficient
usually behave oppositely, which limits the enhancement of
the power factor (PF = α2σ ) and ZT value.

*Contact author: shuaizhigang@cuhk.edu.cn

Essentially, the Seebeck coefficient represents the “trans-
port entropy,” which is the entropy carried by the unit charge
carrier in charge transport [18,19]. Therefore, to enhance
the thermoelectric performance further, it is necessary to in-
terpret the charge carriers’ thermoelectric transport process
comprehensively. Obviously, electron-phonon coupling plays
a vital role in thermoelectric transport. Generally speaking,
electron-phonon coupling can be attributed to two types:
local electron-phonon coupling, originating from intramolec-
ular vibration and nonlocal electron-phonon coupling comes
from intermolecular vibration. Previous studies have system-
atically revealed the effect of local electron-phonon coupling
which decreases the conductivity and enhances the See-
beck coefficient by bandwidth narrowing effect [20–22].
Meanwhile, nonlocal electron-phonon coupling which can
lead to the formation of solitons, polarons, and bipo-
larons [23,24], influencing charge transport [25,26] and
exciton dynamic [27,28] and spectral properties [29] sig-
nificantly, has not been fully [30] studied in thermoelectric
transport.

According to previous research, nonlocal electron-phonon
coupling introduces nonlocal dynamic disorder and in-
volves various transport regimes, including (i) a hopping
regime [11,31–34] where charge carriers are localized at
one molecule because of strong local electron-phonon cou-
pling, and “hop” from one molecule to another, (ii) a
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phonon-assisted regime [35,36] where there exists a large
thermal fluctuation of transfer integrals induced by nonlocal
electron-phonon coupling, which enhances mobility, (iii) a
band regime [37–39] where charge carriers move “wavelike”
and are scattered by nonlocal phonons and impurities, (iv) a
transient localization regime [40–42] where charge carriers
are time-dependently localized at several molecules by the
motion of molecules (dynamic disorder), and (v) an inter-
mediate regime [30] which belongs to none of the regimes
mentioned above.

The involved complex transport regimes hindered the
comprehensive understanding of nonlocal electron-phonon
coupling on thermoelectric transport for a long time because
of the lack of a numerically exact simulation method [25]. For-
tunately, the time-dependent density matrix renormalization
group [43–45] (TD-DMRG) has the potential to overcome
the difficulty in simulation [30,46], and in our previous work
the computational methods for calculating the conductivity
and Seebeck coefficient by TD-DMRG have been developed,
which are both valid and numerically exact [22].

In this work, we will adopt the TD-DMRG to investigate
thermoelectric transport in organic materials and reveal the
influence of nonlocal electron-phonon coupling in different
charge transport regimes.

II. MODEL AND COMPUTATIONAL APPROACH

The Holstein-Peierls model [23,47] captures the effect
of local and nonlocal electron-phonon coupling in organic
materials [48]. In this work, we consider N molecules
in a one-dimensional chain with lattice constant � and
each molecule contributes one molecular orbital (LUMO
or HOMO corresponding to n-type or p-type doping) to
the thermoelectric transport process. With the periodic
boundary condition, the Hamiltonian contains the following
five parts:

Ĥ = Ĥe + Ĥe−ph1 + Ĥe−ph2 + Ĥph1 + Ĥph2. (1)

Here, the electron part reads

Ĥe =
∑

j

ε j â
†
j â j +

∑
j

τ j, j+1(â†
j+1â j + â†

j â j+1). (2)

In the electron part, â†
j and â j are the creation and anni-

hilation operators, respectively, of the jth molecule’s orbital.
Considering the tradition of the DMRG, we denote it as “site
j” below for brevity. ε j and τ j, j+1 are the orbital energy at
site j and the transfer integral between sites j and j + 1,
respectively. For simplicity, we set ε j = 0 and τ j, j+1 = τ .

The Holstein model captures the effect of intramolec-
ular electron-vibration coupling (i.e., local coupling), in-
cluding the bandwidth narrowing effect and reorganization
energy [21,49,50]. Ĥe−ph1 and Ĥph1 correspond to the
Holstein model. Here, the local electron-phonon coupling
term is

Ĥe−ph1 =
∑

j,n

h̄gH,nωH,n(b̂†
jn + b̂ jn)â†

j â j (3)

and the local phonon energy term is

Ĥph1 =
∑

j,n

h̄ωH,n

(
b̂†

jnb̂ jn + 1

2

)
. (4)

b̂†
jn and b̂ jn are the creation and annihilation operators, re-

spectively, of the phonons corresponding to the nth vibration
mode at site j. ωH,n and gH,n are the phonon frequency
and the electron-phonon coupling constant of the nth in-
tramolecular vibration mode. The reorganization energy is
defined as λ = ∑

n g2
H,nωH,n, which represents the strength

of local electron-phonon coupling. For simplicity, we use
four modes, ωH = 40, 120, 200, and 280 meV and gH =
1.247, 0.645, 0.2311, and 0.0792.

The Peierls model captures the effect of intermolecular
electron-vibration coupling (i.e., nonlocal coupling), leading
to thermal fluctuation of transfer integrals [25]. Ĥe−ph2 and
Ĥph2 correspond to the Peierls model. Here, the nonlocal
electron-phonon coupling term is

Ĥe−ph2 =
∑

j

h̄gPωP(ĉ†
j + ĉ j )(â

†
j â j+1 + â†

j+1â j ) (5)

and the nonlocal phonon energy is

Ĥph2 =
∑

j

h̄ωP

(
ĉ†

j ĉ j + 1

2

)
. (6)

Here, ĉ†
j and ĉ j are the creation and annihilation operators,

respectively, of the phonons corresponding to the intermolec-
ular vibration between site j and site j + 1. ωP and gP are
the vibration frequency and coupling constant of the inter-
molecular vibration mode. For simplicity, one intermolecular
vibration mode ωP = 10 meV is adopted [48,51]. Thermal
fluctuation of transfer integral 
V =

√
〈τ 2〉 − 〈τ 〉2 reflects

the dynamic disorder introduced by temperature and nonlocal
coupling. 
V is related to nonlocal electron-phonon coupling
as presented below [52,53]:


V = gPωP

√
coth

ωP

2kBT
. (7)

In our program, gP is used as the input parameter for
calculation, while gP is more abstract than 
V . Therefore,

V is adopted to distinguish different transport regimes [use
Eq. (7)], and we will use 
V in Figs. 2 and 3. Considering 
V
also changes with temperature, gP is adopted in other cases.

The conductivity σ and Seebeck coefficient α are calcu-
lated via the Kubo formula [20,21]:

σ = 1

kBTV

∫ +∞

0
Re C1(t )dt, α = 1

T

∫+∞
0 Re C2(t )dt

∫+∞
0 Re C1(t )dt

, (8)

where V is the volume of the unit cell, T is temperature, kB

is the Boltzmann constant, and the current-current correlation
function C1(t ) and heat current-current correlation function
C2(t ) are defined as below [54]:

C1(t ) = Tr
[
ρ̂0eiĤt/h̄Ĵee−iĤt/h̄Ĵe

]
,

C2(t ) = Tr
[
ρ̂0eiĤt/h̄ĴQe−iĤt/h̄Ĵe

]
. (9)
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FIG. 1. Schematic diagram of the numerical calculation progress. Here, we map the Holstein-Peierls model to the tensors in the DMRG
calculation. If we consider two local vibration modes in each molecular and nearest-neighbor nonlocal vibration (red dotted box), we can align
the tensors (sites) of electrons, nonlocal vibrations, and local vibrations as presented above.

Here, Ĵe represents the electrical current operator:

Ĵe = − i

h̄
e�

∑
j

T̂j, j+1(â†
j+1â j − â†

j â j+1). (10)

ĴQ represents the heat current operator:

ĴQ = Ĵ I
Q + Ĵ II

Q + Ĵ III
Q , (11)

Ĵ I
Q = − i

h̄
�

∑
j

T̂j, j+1T̂j+1, j+2(â†
j+2â j − â†

j â j+2), (12)

Ĵ II
Q = − i

h̄
�

∑
j

[
1

2
(Ê j + Ê j+1) − μ

]

× T̂j, j+1(â†
j+1â j − â†

j â j+1), (13)

Ĵ III
Q = i

2h̄
�

∑
j

h̄2gPω2
P(ĉ†

j − ĉ j )(â
†
j+1â j + â†

j â j+1). (14)

Here, Ĵ I
Q, Ĵ II

Q , and Ĵ III
Q represent the heat current originating

from the electron’s kinetic energy, the electron’s potential
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FIG. 2. Five transport regimes in organic materials. The yellow
part is the hopping regime, where |τ | � λ and 
V � |τ |; the purple
part is the phonon-assisted regime, where |τ | � λ and 
V is com-
parable to or larger than |τ |; the blue part is the band regime, where
|τ | � λ and 
V � |τ |; the green part is the transient localization
regime, where |τ | � λ and 
V is comparable to or larger than
|τ |; the white part is the intermediate regime, where |τ | ∼ λ and

V ∼ |τ |. The gray dashed lines (I), (II), and (III) correspond to
the parameter selection in Fig. 3. The black crosses correspond to
the representative parameters of five transport regimes, which are
adopted in Figs. 4–6.

energy, and intermolecular vibration. And Ê j is the on-site
energy operator corrected by the local phonon and T̂j, j+1 is the
transfer integral operator corrected by the nonlocal phonon:

Ê j = ε j +
∑

n

h̄gH,nωH,n(b̂†
jn + b̂ jn), (15)

T̂j, j+1 = τ j, j+1 + h̄gPωP(ĉ†
j + ĉ j ). (16)

The thermoelectric transport process is understood under
the grand canonical ensemble and the density operator is

ρ̂0 = 1

Z
e−β(Ĥ−μN̂e). (17)

Here, the partition function is Z = Tr[e−β(Ĥ−μN̂e )] and the
electron number operator is N̂e = ∑

j â†
j â j . The doping ratio

is defined as c = Tr[ρ̂0N̂e]/N . It seems that we can use the
particle number conservation for efficient calculation, while
the grand canonical ensemble also performs much better in
changing the doping ratio continuously, especially when N is
small. In addition, we set the lattice constant as � = 10 a.u.,
and the temperature as T = 300 K.

The numerical calculation is carried out by transforming
Eq. (9) into

C1(t ) = 〈β |eiĤt/h̄Ĵee−iĤt/h̄Ĵe|β〉,
C2(t ) = 〈β |eiĤt/h̄ĴQe−iĤt/h̄Ĵe|β〉. (18)

Here, |β〉 is the thermal state obtained by a purification
method [44]. As presented in Fig. 1, the electron sites and
phonon sites of molecules are mapped to a one-dimensional
chain. The green circles, purple circles, and blue circles
represent the tensors of thermal states |β〉 and 〈β |, cor-
responding to the electron sites, nonlocal vibration sites,
and local vibration sites. Note that the electron sites are

represented by spin basis after Jordan-Wigner transforma-
tion. Then, matrix product operator Ĵe is applied to |β〉.
The orange diamonds represent the time evolution of Ĵe|β〉
and 〈β |, where a time-dependent variational principle with
a projector-splitting algorithm (TDVP-PS) is adopted [45].
Finally, correlation functions C1(t ) and C2(t ) are obtained
by calculating the expectation value of Ĵe and ĴQ (yellow
squares). The sequence of the algorithm is indicated by the
blue arrows in Fig. 1. The details of the parameter selections
are presented in Appendix A.

III. RESULTS AND DISCUSSIONS

As mentioned above, the effect of nonlocal electron-
phonon coupling should be studied across five different
regimes [30]. The five regimes are hopping regime, phonon-
assisted regime, band regime, transient localization regime,
and intermediate regime, as presented in Fig. 2.

First, we study the influence of nonlocal electron-phonon
coupling under three representative cases, namely, strong,
intermediate, and weak local electron-phonon coupling.
Figures 3(a)–3(c) correspond to the case of strong local
electron-phonon coupling (|τ | � λ). When 
V is small, the
conductivity σ increases monotonically with increasing 
V ,
matching well with the analytical solution in the hopping limit
(Appendix B). The Seebeck coefficient α follows the formula
for the hopping limit [55]: α = − kB

e ln( 1−c
c ), remaining in-

dependent of 
V . Additionally, the mean free path lmfp is
much smaller than the lattice constant, suggesting a hopping
transport mechanism. Here, mean free path lmfp is defined as
[56]

lmfp =
[

1

e2ne
C1(0)

]1/2 ∫ +∞

0
dt

∣∣∣∣ Re C1(t )

Re C1(0)

∣∣∣∣. (19)

When 
V increases further, σ exhibits a steady rise while
moving away from the hopping behavior. Simultaneously, α

experiences a decrease due to the widening of the bandwidth,
which shall be illustrated in Figs. 4(a) and 4(b). Considering
lmfp ∼ �, the dominant charge transport mechanism is phonon
assisted when 
V attains large values.

In Figs. 3(g)–3(i), we examine the case of weak local
electron-phonon coupling where λ � |τ |. For small val-
ues of 
V , the conductivity experiences a rapid decrease
as 
V increases, matching well with the predictions of
band theory [57]. The Seebeck coefficient matches the
constant behavior predicted by band theory (Appendix C)
when 
V is small and exhibits a slight increase as 
V
increases. The observation lmfp � � suggests a bandlike
behavior as well. As 
V increases further, the conduc-
tivity continues to decrease, while the Seebeck coefficient
starts to decrease due to the broadening of the bandwidth
[see Figs. 4(e) and 4(f)]. Considering lmfp ∼ �, the trans-
port mechanism conforms to the characteristics of transient
localization [58].

In Figs. 3(d)–3(f), we investigate the intermediate case
where the transfer integral |τ | is comparable to the reor-
ganization energy λ. As the parameter 
V increases, the
conductivity exhibits a consistent and monotonic decrease.
The Seebeck coefficient, on the other hand, roughly remains
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FIG. 3. Influence of nonlocal electron-phonon coupling 
V on conductivity σ , Seebeck coefficient α, and mean free path lmfp under
different local electron-phonon couplings. (a)–(c), (d)–(f), and (g)–(i) correspond to strong, intermediate, and weak local electron-phonon
coupling, respectively. Here, c = 0.03 and T = 300 K.

035201-5



GE, LI, REN, AND SHUAI PHYSICAL REVIEW B 110, 035201 (2024)

FIG. 4. One-particle spectral density function when T = 300 K in (a) hopping regime, (b) intermediate regime 1, (c) band regime, (d)
phonon-assisted regime, (e) intermediate regime 2, and (f) transient localization regime.

constant with increasing 
V . Additionally, lmfp consistently
remains comparable to the lattice constant � throughout the
analysis. These behaviors are different from the mechanism
mentioned above and are attributed to the intermediate trans-
port regime [30].

Moreover, it should be noted that, under a different strength
of local electron-phonon coupling, the change of 
V signif-
icantly influences the value of conductivity (more than ten
times) while it little changes the absolute value of the Seebeck
coefficient (less than 10%).

Based on the transport regimes identified in Fig. 3, we
select the following representative parameters to cover the
five transport regimes mentioned above; specifically, τ =
−6 meV, λ = 125 meV, gP = 0.25 for the hopping regime,
τ = −6 meV, λ = 125 meV, gP = 1.5 for the phonon-
assisted regime, τ = −72 meV, λ = 125 meV, gP = 0.25
and τ = −72 meV, λ = 125 meV, gP = 1.0 for the interme-
diate regime (denoted as intermediate regimes 1 and 2), τ =
−144 meV, λ = 0, gP = 0.25 for the band regime, and τ =
−144 meV, λ = 0, gP = 2.5 for the transient localization
regime. Note that 
V is proportional to gP when the tem-
perature is fixed, and gP = 1.0 corresponds to 
V = 23 meV
when T = 300 K. The parameters correspond to the black
crosses in Fig. 2.

The influence of nonlocal electron-phonon coupling on
the one-particle spectral density function A(k, E ) across five
transport regimes is plotted in Fig. 4. Here [25],

A(k, E ) = 1

Nπ

N∑
jl

eik�( j−l )
∫ +∞

0
Tr[â j (t )â†

l (0)]eiEt dt .

(20)

In Fig. 4(a), because of the bandwidth narrowing ef-
fect [59] introduced by local coupling, the peaks of each
wave number of A(k, E ) are very narrow and discrete in
the hopping regime, indicating the localization of charge
carriers. When nonlocal coupling 
V grows, the transport
behavior comes to the phonon-assisted regime. As pre-
sented in Fig. 4(b), A(k, E ) becomes more dispersive [36]
(the peaks at each wave number are wider). In interme-
diate regimes 1 and 2 presented in Figs. 4(c) and 4(d),
A(k, E ) is much wider [i.e., the difference between the peaks
of A(k, E ) is larger] than Figs. 4(a) and 4(b) because of
larger transfer integrals. In the band regime presented in
Fig. 4(e), A(k, E ) is wide and corresponds to the formula
of the energy band, i.e., E (k) = 2τ cos k�. As the nonlo-
cal coupling increases, the transport mechanism comes to
the transient localization regime [30,60], which is shown in
Fig. 4(f). Here, A(k, E ) is more dispersive than A(k, E ) in
Fig. 4(e).

The difference between Figs. 4(a) and 4(b), Figs. 4(c)
and 4(d), and Figs. 4(e) and 4(f) show that increasing the
nonlocal electron-phonon coupling (
V ) just modifies the
shapes of A(k, E ) slightly by making A(k, E ) more disper-
sive, while the change of local coupling influences A(k, E )
obviously, widening the difference between the peaks, as
presented in Figs. 4(a), 4(c), and 4(e). These behaviors are
essential as the density of state (DOS) can be calculated as
below [25]:

D(E ) = 1

V

∑
k

A(k, E ). (21)

035201-6



ROLES OF NONLOCAL ELECTRON-PHONON COUPLING … PHYSICAL REVIEW B 110, 035201 (2024)

FIG. 5. Temperature dependence of conductivity σ and Seebeck coefficient α in different transport regimes. Here, c = 0.03. Note that in
(a) and (b) τ = −6 meV and λ = 125 meV; in (c) and (d) τ = −72 meV and λ = 125 meV; in (e) and (f) τ = −144 meV and λ = 0.

According to the general formula for Seebeck coefficients
[2],

α =
∫ +∞

−∞
dE

(E − μ)

eT

σ (E )

σ

(
− ∂ f

∂E

)
, (22)

where

σ =
∫ +∞

−∞
dE σ (E )

(
− ∂ f

∂E

)
(23)

and

σ (E ) = eμc(E )D(E )kBT . (24)

Here, f = 1
1+exp( E− μ

kBT )
is the Fermi-Dirac distribution func-

tion and μc(E ) is the carrier mobility. According to previous
research, when the DOS is narrow [18,55], the Seebeck co-
efficient is a constant α = − kB

e ln( 1−c
c ) independent of 
V ,

as shown in the hopping regime presented in Fig. 3(b). When
the DOS is wide [61], the behavior of the Seebeck coefficient
can be qualitatively interpreted via Mott’s formula, which
indicates that the Seebeck coefficient value is decided by the
shape of the DOS, and a wider DOS leads to a lower Seebeck
coefficient:

α ≈ π2

3

kB

e
kBT

d ln D(E )

dE

∣∣∣∣
E=μ

. (25)

Therefore, (i) the fact that changing the nonlocal coupling
(
V ) just modifies A(k, E ) slightly explains why the in-
fluence of 
V only has a small influence on the Seebeck
coefficient in Fig. 3 and (ii) the DOS is slightly broadened
as 
V increases when |τ | � λ and |τ | � λ but remains
unchanged as 
V increases when |τ | ∼ λ. These explain
the decrease of the Seebeck coefficient as 
V grows in the

phonon-assisted regime [Fig. 3(b)] and the transient localiza-
tion regime [Fig. 3(h)], and the constant behavior of α in the
intermediate regime [Fig. 3(e)].

The temperature dependence of the conductivity and See-
beck coefficient in various transport regimes are depicted in
Fig. 5. Specifically, in the hopping regime shown in Figs. 5(a)
and 5(b), we observe a decrease in the conductivity with
increasing temperature due to the enhancement of the band-
width narrowing effect. Meanwhile, the Seebeck coefficient
remains constant as temperature increases, attributed to the
narrow polaron band [18,21]. This behavior aligns with the
formula α = − kB

e ln( 1−c
c ), which is temperature independent.

In the phonon-assisted regime, the conductivity also decreases
as temperature rises, while the Seebeck coefficient remains
relatively unchanged. In the intermediate transport regime
shown in Figs. 5(c) and 5(d), the conductivity experiences a
rapid decrease with increasing temperature. Simultaneously,
the Seebeck coefficient is roughly independent of tempera-
ture. In the transient localization regime and band regime
shown in Figs. 5(e) and 5(f), the conductivity decreases with
increasing temperature due to the growing dynamic disorder.
For the Seebeck coefficient, we observe a roughly linear in-
crease with temperature, which can be interpreted through
Mott’s formula [61] [Eq. (25)].

Note that the strength of nonlocal electron-phonon cou-
pling 
V increases as temperature increases [Eq. (7)].
Therefore, the temperature dependence also suggests nonlocal
coupling has a significant influence on the electrical conduc-
tivity but little effect on the Seebeck coefficient.

Figure 6 illustrates the dependence of transport coefficients
on doping ratio c in various transport regimes. Taking elec-
tron doping [Figs. 6(a)–6(c)] as an example, we observe that
the conductivity consistently increases as the doping ratio
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FIG. 6. Dependence of conductivity σ , Seebeck coefficient α, and power factor PF on doping ratio c when T = 300 K. (a)–(c) correspond
to electron doping and (d)–(f) correspond to hole doping.

increases, while the Seebeck coefficient exhibits an opposite
trend. Throughout all transport regimes, the conductivity fol-
lows a proportional relationship σ ∝ ln c, and the Seebeck
coefficient roughly follows α = A ln c + B, where A and B
are constants. Additionally, the absolute values of conduc-
tivity vary significantly across different transport regimes.
Typically, we expect higher conductivity in the band regime,
intermediate regime, and transient localization regime due to
large effective transfer integrals, which are reflected in the
spectral density functions shown in Figs. 4(c)–4(f). Different
from the huge difference in the value of conductivities in
different transport regimes, the values of the Seebeck coef-
ficient are similar in different transport regimes under a fixed
doping ratio. Notably, the doping ratio c influences both the
conductivity and the Seebeck coefficient significantly, which
can be interpreted in Eqs. (22) and (23), where the doping
ratio (related to chemical potential μ) is directly involved in
the expression of σ and α. The power factors, PF = α2σ ,
are plotted in Fig. 6(c). The optimal electron doping ra-
tio for achieving the highest power factor is approximately
3%–10% across all transport regimes. Moreover, the case of
hole doping is also investigated in Figs. 6(d)–6(f), demon-
strating impressive similarities to the electron doping case
as expected. It should be noted that the similarities between
electron doping and hole doping rely on the validity of
the Holstein-Peierls model, which shall fail when electron-
electron interactions are significant. For more discussions, see
Appendix D.

IV. CONCLUSIONS

In summary, we conducted a comprehensive investiga-
tion of the nonlocal electron-phonon coupling’s influence on
thermoelectric transport in organic materials, adopting the
TD-DMRG method that overcomes the limitations of pre-
vious approaches. Notably, we find that nonlocal coupling
significantly influences conductivity while it has little effect
on the Seebeck coefficient, which can be interpreted via the
change of DOS and the general expression in thermoelectric
transport. Meanwhile, the doping ratio significantly influences
both conductivity and the Seebeck coefficient, and when the
Holstein-Peierls model is valid, the optimal doping ratio for
the highest power factor is making HOMOs (LUMOs) 3%–
10% filled by holes (electrons).

Therefore, our work indicates an experimental strategy
valid in all transport regimes for higher thermoelectric power
factors: we can enhance the conductivity under a specific
doping ratio (i.e., mobility) through rational molecular design
that enhances the transfer integral or suppresses the strength
of the electron-phonon coupling first and then achieve an op-
timal doping ratio that balances the conductivity and Seebeck
coefficient for the highest power factor.
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−
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t2
0
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APPENDIX A: DETAILS OF NUMERICAL
CALCULATIONS

We carry out calculations via the PYTHON package RENOR-
MALIZER. The computational parameters adopted are listed in
Table I.

The virtual bond dimension D and the size of nonlocal
phonon basis dP are tested as well, which is plotted in Fig. 7.
Note that about 64 is enough for virtual bond dimensions. We
suppose the major reason is that the electron fillings adopted
in this work are relatively low, which means fewer degenerate
states are involved in the calculations. Previous studies [30,46]
also support the selection of this relatively small virtual bond
dimension. Although relatively small virtual bond dimensions
are adopted compared to Hubbard-like models, large physical
bond dimensions are selected to ensure an accurate descrip-
tion on vibrations, which is essential in the Holstein-Peierls
model and significantly increases computational cost.

In addition, applying Ĵe to |β〉 is a main source of trun-
cation error cutoff, which is presented in Table II. We can see
that D = 64 ensures reasonable error cutoff.

APPENDIX B: HOPPING BEHAVIOR

The conductivity in the hopping limit is calculated via

σ = neeμe, (B1)

where electron mobility μe is calculated via [30]

μe = e�2

kBT

∫ ∞

−∞
[τ 2 + (gPωP )2 f (ωP, t )]e−�(t )dt, (B2)

�(t ) = 2
∑

n

g2
H,n[1 + 2N (ωH,n) − f (ωH,n, t )]

+ 4g2
P[1 + 2N (ωP ) − f (ωP, t )], (B3)

TABLE II. Truncation error cutoff of Ĵe|β〉. The second column
is the truncation error cutoff of Ĵe|β〉. (We calculate the truncation
error cutoff across every virtual bond and then calculate the average.)
The third column is the normalized distance between compressed
state |i〉 and reference state |ref〉. Here, we use D = 192 as a
reference state, and the normalized distance between compressed
state |i〉 and reference state |ref〉 is defined as ri = 2‖|i〉 −
|ref〉‖/‖|i〉 + |ref〉‖. The parameters in intermediate regime 2 are
adopted.

Virtual bond dimension of |i〉 si (×10−4) ri

48 4.30 0.0164
64 2.26 0.0097
96 0.69 0.0041
128 0.30 0.0019

f (ω, t ) = (1 + N (ω))e−iωt + N (ω)eiωt , (B4)

N (ω) = 1

eω/kBT − 1
. (B5)

The Seebeck coefficient in the hopping limit is calculated
via [55]

α = −kB

e
ln

(
1 − c

c

)
. (B6)

APPENDIX C: BAND LIMIT

The band limit in the main text is calculated via the Boltz-
mann transport equation [57]:

σ = e2
∑

k

(
− ∂ f

∂Ek

)
vkvkθk, (C1)

α = e

σ

∑
k

Ek − μ

T

(
− ∂ f

∂Ek

)
vkvkθk, (C2)

where k is the wave vector, θk is the relaxation time, group
velocity vk = 1

h̄
∂Ek
∂k , and f is the Fermi-Dirac distribution

function. In rigid band approximation, the energy band of
electrons is

Ek = 2τ cos k�. (C3)

The total relaxation time can be expressed as

1

θtotal(k)
= 1

θimp(k)
+ 1

θph(k)
. (C4)

θimp(k) is set as a constant θ0 which satisfies

σ (gP = 0, λ = 0) = e2
∑

k

(
− ∂ f

∂Ek

)
vkvkθ0. (C5)

According to deformation potential approximation [38],

1

θph(k)
=

∑
k′

2π

h̄

kBT E2
1

Cii
δ(Ek′ − Ek )(1 − cos γ ). (C6)

Here, Cii is the elastic constant, E1 is the deformation
potential constant, and γ is the scattering angle. For a
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FIG. 7. (a),(b) Convergence of virtual bond dimension D; (c),(d) convergence of the size of the nonlocal phonon basis dP; and (e),(f)
convergence of the size of local phonon basis dH in our work.

one-dimensional system with the E−k relationship presented
in Eq. (C3), γ = 0 or π when δ(Ek′ − Ek ) is nonzero. Con-
sidering the definition of E1 and Cii, 1

θph (k) is a constant

independent of k and proportional to gP, i.e., 1
θph (k) = AggP,

where the factor Ag can be calculated by the second data point
presented in Fig. 2(g).

APPENDIX D: THE LIMITATION OF HOLSTEIN-PEIERLS
MODEL

In this work, we adopted the spinless Holstein-Peierls
model. This model is widely used to study the charge trans-
port process in organic materials. However, this model not
only ignores Columbic electron-electron interactions, but
also ignores phonon-mediated electron-electron interactions
between on-site electrons with different spins. Take the fol-

lowing model as an example:

Ĥ =
∑
j,σ

ε j,σ â†
j,σ â j,σ +

∑
jk,σ

τ jk â†
j,σ âk,σ

+
∑
j,n,σ

h̄gH,nωH,n(b̂†
jn + b̂ jn)â†

j,σ â j,σ

+
∑

j,n

h̄ωH,n

(
b̂†

jnb̂ jn + 1

2

)
. (D1)

Here, σ denotes spin up and down. By applying the follow-
ing unitary transformation,

H̃ = eŜĤe−Ŝ, (D2)
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where

Ŝ =
∑
j,n,σ

gH, n(b̂†
jn − b̂ jn)â†

j,σ â j,σ . (D3)

We will find

H̃ =
∑
j,σ

ε j,σ â†
j,σ â j,σ +

∑
jk,σ

τ jk â†
j,σ âk,σ X̂ †

j X̂k

+
∑

j,n

h̄ωH,n

(
b̂†

jnb̂ jn + 1

2

)
−

∑
j,σ

h̄g2
H,nωH,nâ†

j,σ â j,σ

−
∑

j

2h̄g2
H,nωH,nâ†

j,↑â j,↑â†
j,↓â j,↓, (D4)

where

X̂k = exp

[
−

∑
n

gH,n(b̂†
jn − b̂ jn)

]
. (D5)

In Eq. (D4), the fifth term corresponds to the influence
of phonon-mediated electron-electron coupling. Consider-
ing this term is proportional to n̂ j,↑n̂ j,↓, this term is much
smaller than other terms when doping ratio c is small.
When this term can be ignored, electrons with different
spins move independently, and in such case the spinless
Holstein-Peierls model is valid. Indeed, in other cases such
as heavily doped, the validity of the spinless Holstein-Peierls
model should be checked. Moreover, in such cases not only
electron-electron Coulomb interactions but also electron-
electron interactions mediated by phonons should be taken
into account through models such as the Holstein-Hubbard
model. We believe both phonon-mediated and Coulombic
electron-electron interactions bring interesting physical phe-
nomena, which need to be discussed as a whole in a further
study.
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