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ABSTRACT
Evaluation of the charge transport property of organic semiconductors requires exact quantum dynamics simulation of large systems.
We present a numerically nearly exact approach to investigate carrier transport dynamics in organic semiconductors by extending the
non-Markovian stochastic Schrödinger equation with complex frequency modes to a forward–backward scheme and by solving it using
the matrix product state (MPS) approach. By utilizing the forward–backward formalism for noise generation, the bath correlation func-
tion can be effectively treated as a temperature-independent imaginary part, enabling a more accurate decomposition with fewer complex
frequency modes. Using this approach, we study the carrier transport and mobility in the one-dimensional Peierls model, where the non-
local electron–phonon interaction is taken into account. The reliability of this approach was validated by comparing carrier diffusion
motion with those obtained from the hierarchical equations of motion method across various parameter regimes of the phonon bath.
The efficiency was demonstrated by the modest virtual bond dimensions of MPS and the low scaling of the computational time with the
system size.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0221143

I. INTRODUCTION

Carrier mobility is a critical parameter for assessing the charge
transport property of organic semiconductors, which poses chal-
lenges to theoretical research due to the complexity with the
flexible and disordered backbone structure.1,2 Numerous mech-
anisms have been proposed to understand carrier dynamics,
including “band-like” behavior,3–5 hopping transport,6,7 phonon-
assisted transport,8,9 and transition localization,10,11 each of which
could be found applicability in organic materials with specific
ranges of charge transfer integral and electron–phonon interac-
tion, respectively.12,13 Numerically exact methods, such as the

time-dependent density matrix renormalization group (TD-DMRG)
approach, which is effective for studying both local and nonlocal
electron–phonon interactions, can provide a comprehensive under-
standing of the charge transport mechanisms.14,15 However, the
exact treatment of all phonon modes may limit its applicability to
the large systems required for simulating charge diffusive motion.
This limitation highlights the need for more efficient methods to
accurately address electron–phonon interactions.

Alternatively, open quantum system methods,16 which focus
solely on reduced dynamics by tracing out the bath degrees of
freedom of phonons, offered a promising approach for such a pur-
pose. To accurately describe carrier dynamics, it is essential to
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account for the memory effects from the bath (non-Markovian
effects17) across various coupling strengths to the bath due to the
comparative timescales of electron transfer process and vibration
relaxation.18

Various methods based on reduced density matrix, such as
the quasi-adiabatic path integral (QUAPI),19,20 the hierarchical
equations of motion (HEOM),21,22 and the Nakajima–Zwanzig
equation,23,24 were proposed to handle non-Markovian dynam-
ics accurately and have been extensively applied to investi-
gate carrier transport processes in organic semiconductors.25–29

Unlike deterministic methods, stochastic methods are another
class of approaches for open quantum systems, including the
density-operator-based stochastic Liouville equations (SLEs)30–34

and stochastic HEOM methods,35 as well as the wave-function-
based stochastic Schrödinger equations (SSEs).36–38 As an unravel-
ing of density matrix evolution, SSE methods produce results by
averaging over multiple trajectories of stochastic wave functions,
offering lower space complexity and facilitating parallel computa-
tion. The time-dependent wave packet diffusion (TDWPD) method,
a typical SSE approach, has been utilized to simulate the charge
transport process in hundreds or even thousands of sites.39–41 How-
ever, it cannot fully describe the low-temperature dynamics due
to the neglect of the imaginary part of the bath correlation func-
tion (BCF).39 The non-Markovian stochastic Schrödinger equation
(NMSSE) presents a numerically exact method, albeit with the chal-
lenge of implementing its complex functional derivative term with
respect to the noise.36,37 To address this problem without com-
promising accuracy, the hierarchy of pure states (HOPS) method
was proposed by introducing auxiliary stochastic wave functions
and constructing hierarchical equations.42 Different noise gener-
ation schemes, including the forward–backward formalism, have
been developed to enhance applicability across different temper-
ature regimes and spectral densities,43–46 as well as to reduce
the number of auxiliary wave functions in HOPS. Both NMSSE
and HOPS have exhibited the potential to evaluate the spectra
or charge transport properties of organic materials.43,47,48 In addi-
tion, leveraging the localized nature of charge carriers, the recently
developed adaptive HOPS (adHOPS) method with size-invariant
scaling demonstrates advantages in quantum simulation of large
systems.49–51

The advancement of tensor network states (TNS), a low-
entanglement representation of many-body states, can signifi-
cantly reduce the computational cost for simulating quantum
dynamics.52–54 TNS formalism has been integrated with various
open quantum system methods, including propagating the influ-
ence functional directly55–58 or solving equations of motion,59–64 to
simulate the dynamic evolution of the reduced density matrix. In
our previous work, we reformulated the HOPS using conventional
ladder operators in Fock space and wave function rescaling tech-
niques to derive a NMSSE in complex frequency modes (cNMSSE).
We subsequently solved the cNMSSE using the matrix product state
(MPS) method to simulate exciton diffusion dynamics in a lin-
ear chain, considering local electron–phonon interactions at zero

temperature.63 However, we overlooked scenarios involving non-
local electron–phonon interaction, which is relevant for charge
transport as shown in other studies conducted within mixed quan-
tum/classical dynamics,65–67 polaron transformation,8,68 or transient
localization theory.10,11

In this work, we extend the cNMSSE method to the
forward–backward formalism,45,46 which results in an adjusted
bath correlation function that only contains the temperature-
independent imaginary part and can be decomposed into fewer
modes with greater accuracy. We employ this method to inves-
tigate the diffusion dynamics of a single charge carrier within
the one-dimensional Peierls model with nonlocal electron–phonon
coupling. The accuracy of the cNMSSE method was validated
by benchmarking against the HEOM method, and its com-
putational efficiency was assessed by analyzing the computa-
tional cost of individual trajectories and the convergence trend
of averaged trajectories. Our computations are executed using
Renormalizer, a home-made python package designed for quan-
tum dynamics simulation based on the TD-DMRG method
(Appendix A).69,70

II. METHODS
A. Non-Markovian stochastic Schrödinger equation

We begin with the Hamiltonian of a quantum system coupled
linearly with a bosonic bath,

Ĥ = ĤS + ĤB + ĤSB

= ĤS +∑
λ
(

p̂2
λ

2mλ
+

1
2

mλω
2
λ x̂2

λ) + f̂ (q)⊗ B̂, (1)

where ĤS is the system Hamiltonian and ĤB describes the bath com-
posed of identical harmonic oscillators. The third term illustrates the
linear coupling between the system operator f̂ (q) and the collective
bath coordinate B̂ = ∑λ cλ x̂λ.

Initially, it is assumed that there is no interaction between
the system and the bath, and the bath remains in thermal equilib-
rium. Therefore, the total initial density matrix can be written as
a tensor product of the system and bath density matrices: ρtot(0)
= ρS(0)⊗ ρB. Here, ρB is given by the thermal equilibrium state ρB

= e−βĤ B

Tr{e−βĤ B}
, where β is inverse temperature (we use the units h = kB

= 1 throughout this section). To exactly describe the evolution of
the reduced density matrix of system, we employed a double path
integral formalism.71 The reduced density matrix ρS(t) at time t
is given by

ρS(t) = ∫ 𝒟[q+]∫ 𝒟[q−]eiS0[q+]ρS(0)e−iS0[q−]ℱ[q+, q−, t], (2)

where S0[q+] and S0[q−] are actions defined by ĤS on forward path
q+ and backward path q−, respectively, and ℱ[q+, q−, t] represents
the Feynman–Vernon influence functional,

ℱ[q+, q−, t] = exp{−∫
t

0
ds∫

s

0
du( f (q+(s)) f (q−(s)))(

α(s, u) −α∗(s, u)
−α(s, u) α∗(s, u)

)(
f (q+(u))
f (q−(u))

)}. (3)
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Here, the bath correlation function (BCF) indicates the bath
memory (non-Markovianity),

α(t, s) = Tr{B̂(t)B̂(s)ρB} = ∫

∞

0

dω
π

J(ω)

× [coth
βω
2

cos ω(t − s) − i sin ω(t − s)], (4)

where

J(ω) =
π
2∑λ

c2
λ
ωλ
δ(ω − ωλ) (5)

is the spectral density that implies the interaction intensity between
the system and different bath modes. The non-Markovian effects
matter when the BCF decays to zero slowly compared with the relax-
ation of the system. The off-diagonal kernel matrix of the influence

functional indicates the coupling between the forward and back-
ward paths and can be divided into the diagonal and off-diagonal
components,

⎛

⎝

α(s, u) −α∗(s, u)
−α(s, u) α∗(s, u)

⎞

⎠

=

⎛

⎝

α̃(s, u) 0
0 α̃∗(s, u)

⎞

⎠

+

⎛

⎝

α(s, u) − α̃(s, u) −α∗(s, u)
−α(s, u) α∗(s, u) − α̃∗(s, u)

⎞

⎠

,

(6)

where α̃(s, u) is the adjusted BCF (aBCF) that will be explained later.
The Hubbard–Stratonovich (H–S) transformation is used to further
decouple the forward and backward paths at the cost of introducing
stochastic noises,72

ℰ{exp [−i∫
t

0
ds (Z+(s) f (q+(s)) − Z∗−(s) f (q−(s)))]}

z

= exp{−∫
t

0
ds∫

s

0
du( f (q+(s)) f (q−(s)))(

α1(s, u) −α2(s, u)
−α∗2 (s, u) α∗1 (s, u)

)(
f (q+(u))
f (q−(u))

)}, (7)

where α1 and α2 are correlation functions of the complex Gaussian
noises Z±,

ℰ{Z+(s)}z = ℰ{Z−(s)}z = 0, (8)

ℰ{Z+(s)Z+(u)}z = ℰ{Z−(s)Z−(u)}z = α1(s, u) = α(s, u) − α̃(s, u),
(9)

ℰ{Z+(s)Z∗−(u)}z = α2(s, u) = α∗(s, u). (10)

The ℰ{⋅ ⋅ ⋅ }z denotes the stochastic average over Gaussian noises.
The derivation of the H–S transformation is detailed in Appendix B.
Equation (10) ensures the decoupling of the forward and back-
ward paths in the influence functional, while the selection of α1 in
Eq. (9) is flexible with different noise generation schemes. Accord-
ing to Eq. (6), the influence functional can then be divided into
two parts,

ℱ[q+, q−, t] = exp (−Φres[q+, t] −Φ∗res[q
−, t])ℰ

× {exp [−i∫
t

0
ds(Z+(s) f (q+(s))

− Z∗−(s) f (q−(s)))]}
z
, (11)

where

Φres[q±, t] = ∫
t

0
ds∫

s

0
du f (q±(s))α̃(s, u) f (q±(u)). (12)

Assuming that the system is initially in a pure state given
by ρS(0) = ψ(0)ψ

∗
(0), the forward and backward stochastic wave

functions can be expressed in the path integral formalism as

ψ(Z±, t) = ∫ 𝒟[q±] exp{iS0[q±] − i∫
t

0
dsZ±(s) f (q±(s))

−Φres[q±, t]}ψ(0). (13)

For practical calculation, the evolution equations of ψ(Z±, t) are
presented as

d
dt
ψ(Z±, t) = −i[ĤS + Z±(t) f̂ (q) + f̂ (q)∫

t

0

× duα̃(t, u)
δ

δZ±(u)
]ψ(Z±, t). (14)

The above equation shares the same structure as the NMSSE
derived by Diósi and Strunz,36 with two key differences: the forward
and backward wave functions can be different, and there is flexibility
in choosing α̃, which broadens the range of applications for vari-
ous temperatures and spectral densities. By solving the equations,
ρS(t) in Eq. (2) can be obtained by averaging over an ensemble of
stochastic trajectories, i.e., ρS(t) = ℰ{ψ(Z+, t)ψ∗(Z−, t)}z .

B. HOPS and generation of noises
Dealing with the functional derivative term in Eq. (14) is chal-

lenging, but it can now be addressed using the HOPS method
derived in the coherent state representation.42 Alternatively, it can
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be obtained by introducing auxiliary stochastic wave functions in the
path integral approach.44,45 By approximating the aBCF as a sum of
complex exponential functions,

α̃(t, s) ≈
K

∑
k=1

dke−vk(t−s), (15)

and following the latter approach, we define the auxiliary wave
functions as Ref. 45

ψn(Z±, t) = ∫ 𝒟[q±] exp{iS0[q±] − i∫
t

0
dsZ±(s) f (q±(s))

−Φres[q±, t]}∏
k
[−i∫

t

0
dudke−vk(t−u)

]
nkψ(0), (16)

where n = {n1, n2, . . . , nk, . . .} denotes the hierarchical order of each
mode. It follows the hierarchy equations of motion,45

d
dt
ψn(Z±, t) = −[iĤS + iZ±(t) f̂ (q) +

K

∑
k=1

nkvk]ψn(Z±, t)

+ f̂ (q)
K

∑
k=1
[ψn+k
(Z±, t) − nkdkψn−k

(Z±, t)], (17)

where n±k is the shorthand for n ± ek with ek = {0, 0, . . . , 1k, . . .}.
Practically, a closed form of the above equation can be obtained

by choosing the terminator as ψn+k
≈

α(0)
vk

f̂ (q)ψn or by employing
ψn+k
= 0 with an appropriate n+k .42 Consequently, Eq. (17) consists

of ∏K
k=1 (nk,max + 1) coupling equations, where nk,max denotes the

maximum hierarchical depth of the kth mode of Eq. (15).
The selection of the aBCF is crucial because it significantly

influences the computational cost by determining the number of
modes and also impacts numerical convergence. A typical scheme
tailored for the high temperature case is presented as44

α1(t, s) = ∫
∞

0

dω
π

csch
βω
2

cos ω(t − s), (18)

and the resulting aBCF is given by

α̃(t, s) = ∫
∞

0

dω
π

J(ω)[tanh
βω
4

cos ω(t − s) − i sin ω(t − s)],

(19)
where the real part decays much faster than the original BCF, espe-
cially in the high temperature case. Z+ and Z− can be equal while
satisfying Eqs. (9) and (10). After discretization of the frequency, the
noise can be generated as43,44

Z(t) =∑
λ
χλ
⎡
⎢
⎢
⎢
⎢
⎣

√

coth
βωλ

2
+ csch

βωλ
2

cos (ωλt + 2πϕλ)

+ i

√

coth
βωλ

2
− csch

βωλ
2

sin (ωλt + 2πϕλ)
⎤
⎥
⎥
⎥
⎥
⎦

, (20)

where χλ =
√

J(ωλ)Δω
π and {ϕλ} are independent random variables

distributed uniformly in [0,1).
Alternatively, by taking α1(t, s) = Re{α(t, s)},45 one obtains an

aBCF that exclusively incorporates the temperature-independent

imaginary component. Consequently, this decomposition leads to
a reduced number of exponential function modes in Eq. (15). In
particular, for the Debye spectral density

J(ω) =
ηγω

ω2
+ γ2 , (21)

where η and γ refer to coupling strength and characteristic fre-
quency, respectively, the aBCF is reduced to a single exponential
function,

α̃(t, s) = −i
ηγ
π ∫

∞

0
dω

ω
ω2
+ γ2 sin ω(t − s) = −i

ηγ
2

e−γ(t−s). (22)

As a compromise, Z+ and Z− are necessarily distinct, resulting in
the separate evolution of stochastic wave functions on the forward
and backward paths. The noises can be generated as Z±(t) = Zc(t)
+ ε±(t)46 with

Zc(t) =∑
λ
χλ
⎡
⎢
⎢
⎢
⎢
⎣

√
n(ωλ) + 1

2
(a1

λ + ia2
λ)e

iωλt

+

√
n(ωλ)

2
(a1

λ − ia2
λ)e
−iωλt
⎤
⎥
⎥
⎥
⎥
⎦

(23)

and

ε±(t) =∑
λ
χλ[
√

n(ωλ) + 1 −
√

n(ωλ)]

× (b1
± cosωλt + b2

± sinωλt), (24)

where a1
λ, a2

λ, b1
λ,±, and b2

λ,± are random variables drawn from a
normal distribution N(0, 1).

In conclusion, the flexibility in choosing an aBCF broadens the
range of options available when employing HOPS to address diverse
scenarios.

C. cNMSSE and its matrix product states formalism
The cNMSSE is the compact second quantization form of

HOPS. It can be conveniently combined with MPS to efficiently
manage the large number of auxiliary wave functions.63 In the for-
malism of Gao et al., the auxiliary wave functions in HOPS are
first rescaled63,73 as ψn(Z±, t)→ (∏K

k=1 nk!∣dk∣
nk)
− 1

2 ψn(Z±, t), and
the corresponding equations of motion are reformulated as

d
dt
ψn(Z±, t) = −[iĤS + iZ±(t) f̂ (q) +

K

∑
k=1

nkvk]ψn(Z±, t)

+ f̂ (q)
K

∑
k=1
[
√
(nk + 1)∣dk∣ψn+k

(Z±, t)

−
dk
√
∣dk∣

√
nkψn−k

(Z±, t)]. (25)

We can formally define a Fock space {∣n⟩}, where ∣n⟩
= ∣n1, n2, . . . , nk, . . .⟩ encodes the hierarchical order of each
mode. The states {∣n⟩} satisfy the orthonormality condition ⟨n∣n′⟩
= δn,n′ and adhere to the properties of creation and annihilation
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bosonic operators, defined as b̂†
k ∣n⟩ =

√
nk + 1∣n+k ⟩ and b̂k∣n⟩

=
√

nk∣n−k ⟩. By introducing

∣Ψ(Z±, t)⟩ =∑
n
ψn(Z±, t)⊗ ∣n⟩, (26)

the evolution equation of ∣Ψ(Z±, t)⟩ can be written in a second quan-
tization form using the aforementioned bosonic operators, referred
to as cNMSSE,

i
d
dt
∣Ψ(Z±, t)⟩ = Ĥeff(Z±)∣Ψ(Z±, t)⟩, (27)

where Ĥeff(Z±) is the effective Hamiltonian determined by noises
Z±. By comparing the above equation with Eq. (25), we obtain the
effective Hamiltonian,

Ĥeff(Z±) = ĤS + f̂ (q)Z±(t) − i
K

∑
k=1

vkb̂†
k b̂k

− if̂ (q)
K

∑
k=1
[

dk
√
∣dk∣

b̂†
k −
√
∣dk∣b̂k]. (28)

In this effective Hamiltonian, the hierarchical order nk in HOPS is
now interpreted as the occupation number of phonons with complex
frequency vk, and the states ∣n⟩ are considered as eigenvectors within
the pseudo-Fock space.

Ĥeff(Z±) is in the form of sum-of-products (SOP) and thus
can be conveniently represented by time-dependent matrix prod-
uct operators (MPOs). By utilizing bipartite graph theory to con-
struct the symbolic MPO containing parameters,74 we can auto-
matically generate optimal time-dependent MPOs. After expanding
the auxiliary wave function on the basis of system as ψn(Z±, t)
= ∑s ψ

s
n(Z±, t)∣s⟩, the composite wave function is given by

∣Ψ(Z±, t)⟩ =∑
s,n
ψs

n(Z±, t)∣s⟩⊗ ∣n⟩. (29)

The coefficient tensor can be approximated by an MPS ψs
n

≈ ∑a As
1,a1

An1
a1 ,a2 ⋅ ⋅ ⋅A

nK
aK ,1. The required stochastic wave function is

ψ0(Z±, t) = ∑s ψ
s
0(Z±, t)∣s⟩. Consequently, we need to set terms

with physical index greater than zero to zero when calculating
expectations,

ψ0(Z±, t) = ⟨0∣Ψ(Z±, t)⟩ =∑
s,a

As
1,a1 A0

a1 ,a2 ⋅ ⋅ ⋅A
0
aK ,1∣s⟩. (30)

III. NUMERICAL CALCULATIONS
We applied the cNMSSE method to simulate the carrier dif-

fusion dynamics and thereby calculate the mobility of a single
carrier at various temperatures within the one-dimensional Peierls
model, which features nearest-neighbor hopping and nonlocal
electron–phonon interactions [Fig. 1(a)]. The Hamiltonian of the
electron is given by Ĥe = −J∑ j (ĉ

†
j ĉ j+1 + ĉ†j+1ĉ j), where J represents

the transfer integral, and the site energies are assumed to be uniform
and are therefore omitted. The nonlocal phonons correspond to the
intermolecular vibrational modes with their Hamiltonian expressed

as Ĥph = ∑j,λ (
p̂2

j,λ
2 +

1
2ω

2
j x̂

2
j,λ), where j denotes the pair {j, j + 1}.

Each nonlocal phonon bath is coupled linearly to the electron hop-
ping between the adjacent sites, resulting in the off-diagonal cou-
pling terms, i.e., Ĥe−ph = ∑j L̂j ⊗∑λ cλ x̂j,λ with L̂j = ĉ†j ĉ j+1 + ĉ†j+1ĉ j .
The resulting effective Hamiltonian in cNMSSE is presented as

Ĥeff(Z±) = Ĥe +∑
j

Zj,±(t)L̂j − i∑
j,k

vkb̂†
j,kb̂j,k

− i∑
j

L̂j ⊗∑
k
(

dk
√
∣dk∣

b̂†
j,k −
√
∣dk∣b̂j,k). (31)

We assume that the carrier is initially localized at the central site
of a chain consisting of 50 sites and simulate its diffusion dynamics
to calculate the mean square displacement (MSD), which is defined
as ⟨[Δr(t)]2⟩ = ⟨Δr2

(t)⟩ − ⟨Δr(t)⟩2 with

⟨Δr2
(t)⟩ =∑

j
ρj(t)( j − jinit)

2d2, (32)

⟨Δr(t)⟩ =∑
j
ρj(t)( j − jinit)d.

FIG. 1. (a) An illustrative diagram of the Peierls model. The electron–phonon interactions between neighboring sites are described by the Debye spectral density, which
exhibits non-Markovian effects. (b) The MPS ansatz of the cNMSSE for the Peierls model. Each bath is decomposed into a single mode accurately. (c) The mean square
displacement (MSD) of the carrier across varying temperatures. The solid lines represent results obtained from the cNMSSE method averaged over 5000 trajectories, and
the dashed lines denote results from the HEOM method.
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TABLE I. Charge carrier mobility of the Peierls model at different temperatures.

Temperature (K) Mobility (cm2 V−1 s−1
) R2

100 15.5 >0.999
200 5.31 >0.999
300 3.14 >0.999

Here, ρj represents the carrier population on site j, computed as
ρ j(t) = E [⟨Ψ0(Z−, t)∣N̂ j ∣Ψ0(Z+, t)⟩] within the forward–backward
cNMSSE method. The distance d is the separation between adja-
cent sites. The electron–phonon interactions are described by the
Debye spectral density [Eq. (21)], which manifests significant non-
Markovian effects indicated by the gradual decay of the BCF
[Fig. 1(a)]. Each bath is accurately decomposed into a single mode
[Fig. 1(b)]. We employ the same parameters as those used by Shi
et al.,25 i.e., J = 300 cm−1, η = 323 cm−1, γ = 41 cm−1, and d = 4 Å.
The decomposition of the aBCF and the generation of noises are
performed according to Eqs. (22)–(24). The time evolution is con-
ducted by the global propagation and compression method with
the fourth-order Runge-Kutta algorithm (P & C-RK4)70 with the fol-
lowing parameters: the maximum number of phonon occupations
nmax = 5, time step Δt = 1.0 fs, and truncation threshold ζ = 10−4 for
MPS compression. These parameters are optimized to ensure the
convergence of a single trajectory’s results while minimizing com-
putational costs (Fig. 6 in Appendix C). The results averaged over
5000 trajectories are consistent with the HEOM method, even at
low temperatures (Fig. 1), verifying the reliability of the cNMSSE
method.

The diffusion coefficient, defined as D = limt→∞
⟨[Δr(t)]2

⟩

2t , is
determined by linear fitting of the MSD for long times. In this case,
the range for linear fitting is 50–120 fs across all temperatures. Sub-
sequently, the mobility is obtained with the formula μ = eD/kBT. All
these findings are presented in Table I. The coefficients of determi-
nation, each exceeding 0.999, confirm that the convergence of the
cNMSSE method is reliable and the carrier diffusion has reached

equilibrium. The mobility decreases with temperature, indicating
the hindrance effect of nonlocal electron–phonon coupling on the
carrier when the coupling strength is comparable to the transfer
integral.15

We expand the parameter space to include various coupling
strengths and characteristic frequencies of the phonon bath at a
fixed temperature of 300 K. The results are benchmarked against the
HEOM method (see Fig. 9 in Appendix D for details). Compared
with the transfer integral of J = 300 cm−1, we adjust η to 100 and
700 cm−1 for weak and strong nonlocal electron–phonon interac-
tions, respectively, with coherent diffusion dynamics (η = 0 cm−1

)

serving as a reference. For the strong-coupling case, a larger hierar-
chical depth (nmax = 6) and an increased number of trajectories (10
000) are required to achieve convergence (Figs. 7 and 8). The MSD
curve in Fig. 2(a) illustrates that for cases with larger η, the MSD
of the carrier increases faster initially, but slower as equilibrium is
approached. Furthermore, the time required to reach equilibrium is
also longer in the strong-coupling case, in contrast to the Holstein
model with local electron–phonon interactions.29 The impact of
phonon bath frequency is investigated at γ = 10 and 100 cm−1, with
10 000 trajectories employed for the high-frequency case (Fig. 8).
Generally a larger MSD is observed at higher frequencies, while
the results of γ = 41 and γ = 100 cm−1 exhibit only minor differ-
ences within the evolutionary timeframe [Fig. 2(b)], which may be
attributed to the broad distribution of the Debye spectral density
[Eq. (21)].

We further evaluate the computational cost of the cNMSSE
method, including both single trajectories cost and the convergence
behavior. The former is gauged through the virtual bond dimension
of the MPS. Figure 3 illustrates the averaged carrier population and
bond dimension at varying temperatures and across several para-
meter regimes of phonon baths. With fixed truncation criteria of
MPS compression, bond dimensions increase as the carrier diffuses
and interacts with phonons. The maximum bond dimension of the
averaged results exceeds 30 at the bond corresponding to the mid-
point site and diminishes to nearly zero at about 30 bonds away from
the center, coinciding with sites where the population approaches
zero. In Figs. 3(a)–3(c), we observe that although the carrier tends to

FIG. 2. MSD of the carrier at various coupling strengths and characteristic frequencies. From the default parameter set, i.e., η = 323 cm−1, γ = 41 cm−1, J = 300 cm−1, and
T = 300 K, we change η to 100 and 700 cm−1 in (a) and change γ to 10 and 100 cm−1 in (b). All results are averaged over 5000 trajectories except for η = 700 cm−1 and γ
= 100 cm−1, which are averaged over 10 000 trajectories.
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FIG. 3. Carrier population dynamics and virtual bond dimensions of MPS for various sets of parameters. (a)–(c) Differences across various temperatures, (c)–(e) indicate
alterations resulting from different characteristics frequencies, and (c) and (f) variations between intermediate and strong coupling strengths.

localize with increasing temperature, the temperature dependence
of bond dimension is not obvious. The averaged bond dimension
increases with increasing coupling strength η or characteristic fre-
quency γ, as shown in Figs. 3(c)–3(f). To gain a more intuitive
insight into the computational cost, we record the average time cost
required per trajectory for system sizes ranging from 30 to 100 sites,
across different coupling strengths (Fig. 4). The computational time
increases in the strong coupling regime, in agreement with the trend
of the rising bond dimension. Moreover, we observe that for larger
systems, the time cost scales linearly to the system size, while for
smaller systems, the time cost is somewhat larger compared to the
linear scaling observed in larger systems. The critical number of sites
at which this transition occurs is found to increase with the strength
of the coupling.

Finally, we evaluated the convergence of cNMSSE by determin-
ing the standard errors of ⟨Δr2

(t)⟩,

σN(t) =

¿
Á
ÁÀ∑

N
j=1 (xj − x)2

N(N − 1)
, x = ⟨Δr2

(t)⟩, (33)

since the value ⟨Δr(t)⟩ is nearly negligible and contributes little to
the MSD. N denotes the number of trajectories. The results were
averaged over 200, 1000, and 5000 trajectories for temperatures 100
and 300 K, as well as the strong-coupling and high-frequency cases.
As depicted in Fig. 8 in Appendix D, the standard errors decrease as
the number of trajectories increases, confirming the convergence of
the cNMSSE method. The standard errors at 100 K are larger than
those at higher temperatures, in line with the greater stability of
the forward–backward cNMSSE method at higher temperatures.45

Strong electron–phonon interactions and high-frequency phonon
baths also lead to larger standard errors, requiring more trajectories
to achieve convergence and enhance the linearity of the MSD.
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FIG. 4. Average time cost per trajectory, calculated over 50 trajectories, for
systems of varying sizes. The dashed lines indicate the low scaling of the com-
putational time with the system size. The calculations were performed on a on
a four-core, 8 GB RAM virtual machine with Intel Xeon Platinum 8255C CPU @
2.50 GHz.

IV. CONCLUSION
In this work, we integrate the forward–backward formalism

of noise generation with the cNMSSE method to investigate the
charge transport process in organic semiconductors with nonlocal
electron–phonon interactions. Although two stochastic wave func-
tions evolve separately, the resulting aBCF consists solely of the
temperature-independent imaginary part, simplifying the decom-
position process and enhancing accuracy. As a result, the nonlocal
electron–phonon interaction, characterized by the Debye spectral
density, can be precisely decomposed into a single complex mode.
We apply the forward–backward cNMSSE method to examine
carrier diffusion dynamics in the one-dimensional Peierls model
and calculate the mobility at varying temperatures and across
phonon baths with various coupling strengths and characteristic
frequencies. The reliability of our method is validated by bench-
marking against the HEOM method. The cost of computing sin-
gle trajectories and the convergence behavior both highlight the
efficiency of the cNMSSE method. Moreover, the computational
time for single trajectories exhibits low scaling with respect to
system size.

This forward–backward cNMSSE holds potential for further
extension and broader developments. Phonon baths characterized
by a low temperature, high frequency, and strong coupling might
result in numerical instabilities and difficulties in achieving conver-
gence, posing a significant challenge to both cNMSSE and HEOM
methods.75–77 The utilization of the localized nature of carriers by
combining the cNMSSE method with the adHOPS method may help
us achieve a size-invariant cNMSSE method.49,51 The flexibility in
selecting noise generation and BCF decomposition schemes encour-
ages the use of the cNMSSE method to explore different tempera-
tures and various types of spectral densities. The MPS/MPO repre-
sentation of the pure state and Hamiltonian in cNMSSE can also be
adapted to more flexible topological structures of tensor networks,
such as tree tensor network states and operators.62 The successful
application of the HOPS +MPS to the Holstein–Hubbard model64,78

has motivated us to further investigate both electron–phonon and
electron–electron interactions in open quantum dynamics. Due to
its wave function nature and compatibility with TNS, the cNMSSE

method is a promising tool for the study of non-Markovian quantum
dynamics for large open quantum systems.
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APPENDIX A: THE RENORMALIZER PACKAGE

We implement the cNMSSE method on Renormalizer, a
python package based on tensor network states for electron–phonon
quantum dynamics.79 Previously, Renormalizer was primarily
exploited to study the full quantum dynamics of systems with signif-
icant electron–phonon interaction.14,15,69 It can be readily extended
to open quantum dynamics methods utilizing effective Hamiltoni-
ans in the sum-of-products (SOP) form, such as the cNMSSE. The
architecture of Renormalizer, described in Fig. 5, has the following
features:

● The latest version of Renormalizer has supported the con-
struction of both MPS and tree tensor network states
(TTNS). It automatically and analytically constructs opti-
mal Matrix Product Operators (MPOs) and Tree Tensor
Network Operators (TTNOs) for operators in SOP form,
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FIG. 5. Architecture of Renormalizer.

utilizing bipartite graph theory.74,80 Renormalizer also sup-
ports parameterized operators and MPOs, enabling efficient
handling of time-dependent Hamiltonians. The MPS can be
initialized in various forms, such as a Hartree-product state,
or a entangled state. The exact ground state can then be
achieved through static DMRG optimization. In addition,
users can conduct imaginary-time propagation for ground
states or thermal equilibrium states.

● The calculation module offers a comprehensive framework
for both time-dependent DMRG and dynamical DMRG81

at both zero and finite temperatures. Various time evo-
lution schemes are supported, including the traditional

propagation and progress (P & C) method and the state-of-
art time-dependent variational principle (TDVP) method.70

During DMRG sweeping for both ground-state optimiza-
tion and time evolution, the On-the-Fly Swapping (OFS)
algorithm can optimize the sorting of degrees of freedom.82

Graphics processing unit (GPU) acceleration with Cupy as
backend is also supported.70

● Utilizing the previously mentioned algorithms, Renormal-
izer offers modules to calculate the spectra and charge
transfer properties of organic materials.

APPENDIX B: THE HUBBARD–STRATONOVICH
TRANSFORMATION OF THE INFLUENCE FUNCTIONAL

The H–S transformation represents the inverse application of
the multi-dimensional Gaussian integral of complex variables.83

This transformation begins with the calculation of the characteristic
function,

κ(k) =
1
C ∫

dze−
1
2 zTΦz+ikT z , (B1)

where z = (z1, z2, . . . , zi, . . .) is a complex vector with zi = (zi, z∗i )
and k is a complex vector sharing the same dimension as z. The
Gaussian kernel matrix Φ is normalized by the coefficient C and
satisfies

Φ−1
i j = (

⟨zizj⟩ ⟨ziz∗j ⟩
⟨z∗i zj⟩ ⟨z∗i z∗j ⟩

). (B2)

Equation (B1) can be simplified by completing the square as follows:

κ(k) =
1
C ∫

dze−(z−iΦ−1k)TΦ(z−iΦ−1k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1

e−
1
2 kTΦ−1k

= e−
1
2 kTΦ−1k, (B3)

which can be written in a more detailed form,

⟨exp [i∑
i
(kizi + k′i z

∗
i )]⟩ = exp

⎧⎪⎪
⎨
⎪⎪⎩

−
1
2∑ij

(ki k′i)(
⟨zizj⟩ ⟨ziz∗j ⟩
⟨z∗i zj⟩ ⟨z∗i z∗j ⟩

)(
kj

k′j
)

⎫⎪⎪
⎬
⎪⎪⎭

. (B4)

Upon taking the continuous limit by treating the index i, j as time s, u, we derive the relation of Gaussian noise Z(t),

ℰ{exp [i∫
t

0
ds(k(s)Z(s) + k′(s)Z∗(s))]}

z

= exp{−
1
2∫

t

0
ds∫

t

0
du(k(s) k′(s))(

ℰ{Z(s)Z(u)}z ℰ{Z(s)Z∗(u)}z

ℰ{Z∗(s)Z(u)}z ℰ{Z∗(s)Z∗(u)}z
)(

k(u)
k′(u)

)}

= exp{−∫
t

0
ds∫

s

0
du(k(s) k′(s))(

ℰ{Z(s)Z(u)}z ℰ{Z(s)Z∗(u)}z

ℰ{Z∗(s)Z(u)}z ℰ{Z∗(s)Z∗(u)}z
)(

k(u)
k′(u)

)}. (B5)
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Equation (B5) can be naturally generalized to the multi-noise case,

ℰ{exp [i∫
t

0
ds∑

i
.(ki(s)Zi(s) + k′i(s)Z

∗
i (s))]}

z

= exp
⎧⎪⎪
⎨
⎪⎪⎩

−∫

t

0
ds∫

s

0
du∑

i,j
(ki(s) k′j(s))(

ℰ{Zi(s)Zj(u)}z ℰ{Zi(s)Z∗j (u)}z

ℰ{Z∗i (s)Zj(u)}z ℰ{Z∗i (s)Z
∗
j (u)}z

)(
ki(u)
k′j(u)

)

⎫⎪⎪
⎬
⎪⎪⎭

. (B6)

For the case of two noises, Z+ and Z−, by setting k+(s) = − f(q+(s)),
k′−(s) = f (q−(s)), and k−(s) = k′+(s) = 0, we can simplify Eqs. (B6)
to (7).

APPENDIX C: THE OPTIMIZATION OF PARAMETERS

The parameters that affect the accuracy of an individual tra-
jectory include the maximum number of phonon occupations nmax,
the time step Δt, and the truncation threshold ζ for MPS compres-
sion. By applying a fixed noise, we can evaluate the ⟨Δr2

(t)⟩ and
⟨Δr(t)⟩ of the single trajectory as we vary the parameter values.
The parameters are considered determined once the results reach
convergence. nmax dictating the maximum hierarchical depth of the

HOPS method is crucial for determining the accuracy of the method
and was therefore optimized first. With the default time step Δt
= 1.0 fs and truncation threshold ζ = 10−4, Figs. 6(a)–6(f) demon-
strate that nmax = 5 is sufficient to ensure the convergence of the
result across all temperatures.

Subsequently, we optimized Δt and ζ concurrently, as they
collectively influence the accuracy of the P & C-RK4 method.70

Lowering the truncation threshold during compression can indeed
improve the accuracy, whereas the effect of decreasing the time step
is distinct. Reducing Δt increases the number of evolution steps,
leading to more compressions and potential error amplification.
This issue becomes particularly significant with large ζ and small
Δt, where the truncation error might exceed the actual change of

FIG. 6. Parameter optimization via single-trajectory convergence assessment across diverse temperature conditions. (a)–(f) Optimization of the maximum number of phonon
occupations nmax with the default time step Δt = 1.0 fs and truncation threshold ζ = 10−4. In (g)–(l), we optimize the time step Δt and truncation threshold ζ with the optimized
nmax = 5.
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FIG. 7. Parameter optimization via single-trajectory convergence assessment for phonon baths with varying coupling strengths and characteristic frequencies. We follow the
same procedure applied in Fig. 6. The title for each column indicates the differences in parameters from the default set, i.e., η = 323 cm−1, γ = 41 cm−1, and T = 300 K.

FIG. 8. Convergence assessment of the cNMSSE method for the Peierls model at different temperatures by evaluating the standard errors of ⟨Δr2
(t)⟩. Each row corresponds

to a certain set of parameters, while each column corresponds to results averaged over 200, 1000, and 5000 trajectories, respectively. The label for each row indicates the
differences in parameters from the default set, i.e., η = 323 cm−1, γ = 41 cm−1, and T = 300 K.
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FIG. 9. MSD of the carrier across varying coupling strengths η and characteristic frequencies γ at 300 K, which are benchmarked against the HEOM method.

the MPS at each step. Consequently, accuracy is not necessarily
enhanced by merely reducing the time step. With the optimized
parameter nmax = 5, we confirmed that Δt = 1.0 fs and ζ = 10−4 are
adequate for convergence. In contrast, the case with Δt = 0.3 fs
and ζ = 10−4 demonstrates the potential for error amplification
[Figs. 6(g)–6(l)].

Parameters are optimized for different coupling strengths η and
characteristic frequencies γ as well, as depicted in Fig. 7. For the
strong coupling case with η = 700 cm−1, a larger nmax is required for
the convergence of a single trajectory, whereas different character-
istic frequencies do not necessitate an increased hierarchical depth.
The optimized time step and truncation threshold remain consistent
across different parameter sets.

APPENDIX D: CONVERGENCE BEHAVIOR OF
MULTIPLE TRAJECTORIES

The convergence of the cNMSSE method is also assessed by cal-
culating the standard errors of ⟨Δr2

(t)⟩, as given in Eq. (33). The
standard errors diminish with increasing trajectories, indicating the
convergent behavior of the cNMSSE method (Fig. 8). However, in
case of strong coupling and high-frequency phonon baths, the lin-
earity of the curves is not as apparent as in the other cases, which
requires more trajectories to reach convergence.

We compare the results of the cNMSSE method with those of
the HEOM method as complement to Fig. 2. The MSD curves are
obtained by averaging over 5000 trajectories for the weak-coupling
and low-frequency cases and over 10 000 trajectories for the strong
coupling and high-frequency cases.
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