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Abstract: As one of the most important concepts in organic chemistry, aromaticity has
attracted considerable attention from both theoretical and experimental chemists. Limited
by the traditional rules (Hückel’s rules and Baird’s rules), species can only achieve aromatic-
ity in a single state (S0 or T1) in most cases. In 2018, our group first reported 16 electron
osmapentalene that showed aromaticity in both the S0 and T1 states, which is defined as
adaptive aromaticity. In recent years, although adaptive aromatic compounds have been
expanded, the adaptive aromatics containing metal-centered radical has not been reported.
Here, we carry out density functional theory calculations to explore the aromaticity of the
corresponding radicals based on osmapentalyne and osmapentalenes in their S0 states.
It is found that the corresponding radicals of adaptive aromatic osmapentalene exhibit
aromaticity regardless of the radicals formed by oxidation or reduction, supported by a
series of aromaticity indices including ∆BL, NICS, AICD, EDDB, and ELF. In contrast, for
the nonaromatic or antiaromatic compound in the T1 state, only its cationic radical shows
aromaticity. Furthermore, the spin density localization on the metal center is the key factor
for the radicals to achieve aromaticity.

Keywords: aromaticity; metal-centered radical; DFT calculation

1. Introduction
The concept of aromaticity is of increasing interest to both experimental and theoretical

chemists. In 1931, Erich Hückel studied the molecular orbital theory of π-conjugated hydro-
carbons and proposed the classical [4n + 2] rule for aromaticity [1]. In the 1960s, Dewar gave
an interpretation of Hückel’s theory [2]. In addition, Heilbronner [3] and Zimmerman [4,5]
proposed and extended the concept of Möbius aromaticity. Dating back to 1979, Thorn and
Hoffmann first predicted the existence of metalla-aromatics [6]. Three years later, Roper and
co-workers synthesized the inaugural metallabenzene [7]. Subsequently, a series of metalla-
aromatics were synthesized, encompassing metallabenzene [8–14], metallabenzyne [15–17],
metallanaphthalyne [18–20], metallapentalyne [21–23], metallapentalene [24,25], and cer-
tain heteroatom-containing metallacycles such as metallafuran and its derivatives [26–28].
In 2013, Xia and co-workers reported the synthesis of aromatic metallapentalyne [29],
which was a stark contrast to classical organic chemistry’s antiaromatic pentalyne coun-
terpart. According to Hückel’s and Baird’s rules [1,30], cyclic conjugated species with
4n + 2 π-electrons have aromaticity in their singlet electronic ground state (S0) whereas
they are antiaromatic in their lowest triplet state (T1); conversely, species with 4n π-electrons
are deemed antiaromatic in the S0 state but show aromaticity in the T1 state. Limited by
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the two rules, species can only achieve aromaticity in a single state (S0 or T1). Up until
2018, our group conducted density functional theory calculations on osmapentalyne and
osmapentalenes, unveiling an unprecedented example showcasing adaptive aromaticity
(compound shows aromaticity in both the S0 and T1 states) [31], subsequently extending
this phenomenon to ruthenacycles alongside other species (Scheme 1a) [32–36]. In addition,
as one of the novel types among nonclassical aromaticity, metalloaromaticity gradually
expanded the exploration from relatively small ring systems to macrocyclic metallaaro-
matic molecules both theoretically and experimentally [37–40]. Moreover, the concept of
aromaticity has also been applied to catalysis [41,42].
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As one of the most important active substances in organic chemistry, free radicals
play an important role in the synthesis of complex natural products [43]. More attention
has been paid to radicals in organic systems, especially carbon-centered radicals [44–51].
The study of heteroatom-centered radicals has also been steadily advancing [52,53], and
it was surprising to find that the aromaticity in boron clusters survives radical structural
changes [54]. There is also a lot of research on metal-centered radicals [55–59], which are
used in a variety of reactions and helpful to the drug development [60]. In 2023, Cornella
and co-workers reported the synthesis and characterization of two organobismuth(II) com-
pounds (Scheme 1a Compound A), which were proven as metal-centered radicals with little
delocalization onto the ligands by experimental data and DFT calculations [61]. Recently,
Zhang and co-workers [62–64] combined experimental and theoretical studies to reveal
stable metalloradicals (Compounds B and C in Scheme 1a) in the cyclopropanation reaction
of asymmetric olefins and proposed a potential stepwise radical mechanism. Specifically, a
cobalt-based metal radical catalyzed realization of the radical chemoselective intermolecu-
lar amination of the C-H bond at an allyl position effectively advanced the radical approach
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in the design of stereoselective organic synthesis and showed the importance of metallo-
radicals. In addition, metal radicals have also been used in the supramolecular field to
form highly luminescent metallosupramolecular radical cages [65]. Inspired by the role
of metal-centered radicals and our continuing interest in aromaticity, here we explore the
aromaticity of the corresponding radicals based on osmapentalynes and osmapentalenes
in the T1 state, respectively, forming by oxidation and reduction (Scheme 1b). We carry
out density functional theory (DFT) calculations on the metal-centered radicals to investi-
gate whether the corresponding radicals based on adaptive aromatic compound still hold
aromaticity in order to extend the scope of this novel family.

2. Methods
All the DFT calculations were carried out with Gaussian 16 software package [66]. Ge-

ometric optimizations, together with frequency calculations, were performed at the B3LYP
level of theory. The 6-311++G (d, p) basis set was employed for C, H, and O atoms. For
P, Cl and Os atoms, the pseudopotential basis set LANL2DZ was used, with polarization
functions for P (ζ(d) = 0.340), Cl (ζ(d) = 0.514), and Os (ζ(f) = 0.886) [67,68]. Visualizations of
structures are achieved by the CYLview program (version 1.0) [69]. NICS calculations [70]
were carried out at (U)B3LYP-GIAO/def2-TZVP-level. Frequency calculations were per-
formed to confirm that all optimized structures were energy minima. NICS(1)zz values were
obtained by placing ghost atoms at 1Å above/below the ring centers at the (U)B3LYP/def2-
TZVP-level of theory. The electron density of delocalized bond (EDDB) analysis was carried
out with RunEDDB [71,72]. EDDB was employed at the B3LYP/def2-TZVP-level. The
anisotropy of the induced current density (AICD) plots was obtained using the AICD 2.0
program. The topological analysis implemented by Multiwfn (3.8 dev.) [73] is used to
accurately locate the ELFπ bifurcation points by searching the critical points in the sphere
and taking each nucleus in the molecule as the center of the sphere in turn.

3. Results and Discussion
3.1. The Geometries of the Corresponding Radicals from Complexes 1 to 3

Due to the different Gaussian versions used (the previous work was carried out
with Gaussian 03), we initially recalculated the previous studies on model complexes
1–3 (Figure S1) for better comparative analysis. Based on the various analysis, all these
three complexes in the S0 state (1-S0, 2-S0, and 3-S0) and complex 2 in the T1 state (2-T1)
are aromatic, which indicates that the complex 2 has adaptive aromaticity, in line with our
previous findings [31]. Similarly, we examined their corresponding radicals, which are
obtained by oxidation (complexes 1-rad.1, 2-rad.1 and 3-rad.1) and reduction (complexes
1-rad.2, 2-rad.2 and 3-rad.2) by removing and adding one electron, respectively. As shown
in Figure 1, the C–C bond lengths of these metal radicals are in the range of 1.358–1.448 Å,
which are between the carbon–carbon double bond (1.333 Å in CH2=CH2) and the single
bond (1.527 Å in CH3–CH3) calculated at the same level of theory. The bond length
alternations (∆BL) of the three radical cations (1-rad.1, 2-rad.1 and 3-rad.1) are 0.035, 0.042,
0.028Å, which indicate their aromaticity. On the contrary, the bond length alternations
(∆BL) of the radicals obtained by reduction are quite different. Only the complex 2-rad.2 has
a relatively small bond length alternation (0.012Å), showing the potential of aromaticity. By
the way, the relative energies of T1 and D0 with respect to the S0 state are shown in Table 1.
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Table 1. The relative energy (kcal/mol) of T1 and D0 states with respect to the S0 state. The values
of ∆ES-T are equal to ES−ET, standing for the relative energy between the S0 state and the T1 state.
Similarly, the values of ∆ES-D show the relative energy of radicals with respect to the S0 state (D1: rad.1;
D2: rad.2).

Compounds ∆ES-T ∆ES-D1 ∆ES-D2

1 −44.2 −168.8 23.6

2 −21.6 −269.3 140.2

3 −36.0 −155.1 24.0
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Figure 1. The structures of radicals obtained from complexes 1–3 by oxidation and reduction. The
bond lengths (Å, red) and ELFπ bifurcation values (blue) are annotated along the bonds. The bond
length alternations [∆BL(Å), in red] and ∆BV(ELFπ) values (in blue) of the ring excluding the C-Os-C
fragment are annotated below the geometry structures separated by a slash (“/”).

3.2. Aromaticity Analyses Based on Magnetic Properties

To further assess the (anti-)aromaticity of these complexes, we conducted the nucleus-
independent chemical shift (NICS) calculations in their different states. NICS, proposed
by Schleyer and co-workers has emerged as one of the most widely accepted criteria for
determining aromaticity [74–76]. It is derived from computing the magnetic shielding
effect of virtual atoms at any point on the ring (typically at the ring center for σ-aromaticity
or 1 Å above the ring center for π-aromaticity). Commonly, significantly negative NICS
values indicate aromaticity whereas positive NICS ones suggest antiaromaticity. The two-
dimensional NICS grids are capable to show the magnetic shielding in aromatic rings while
de-shielding in antiaromatic rings [77,78]. A value close to zero can be considered non-



Chemistry 2025, 7, 22 5 of 13

aromatic. In comparison with NICS(0)zz, the NICS(1)zz value is used here as it was reported
to be more suitable in evaluating π aromaticity [79]. Surprisingly, the corresponding
radical cations (1-rad.1, 2-rad.1, 3-rad.1) all show aromaticity (Figure 2) within significantly
negative (shielded) NICS(1)zz values (ranging from −21.0 ppm to −28.2 ppm), regardless
of the aromaticity of the T1 state itself. However, when the corresponding radicals are
obtained by reduction, their aromaticity has different characteristics. Only the radical
from compound 2 (2-rad.2) remains aromatic within significant negative NICS(1)zz values
(−24.5 ppm), whereas the corresponding radical anions, 1-rad.2 (0.6/4.3 ppm) and 3-rad.2
(0.6 ppm), exhibit non-aromaticity.
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To further support the (anti-)aromaticity of these complexes, anisotropy of the induced
current density (AICD) analyses was performed to examine the magnetic anisotropy,
which has been proven to be a general method for visualizing delocalized electrons [80,81].
Generally, the clockwise ring current indicates aromaticity in the fused rings, and the
anti-clockwise ring suggests anti-aromaticity. Clockwise currents along the perimeter of
the fused rings in 1-rad.1, 2-rad.1, 3-rad.1, and 2-rad.2 indicate aromaticity, consistent with
the NICS grids. In sharp contrast, the ring currents in 1-rad.2 and 3-rad.2 are tiny and
disordered, characteristic of non-aromaticity (Figure 3). High-resolution plots are provided
in the Supporting Information (Figures S4–S15).
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3.3. Electron Density of Delocalized Bonds (EDDB) Analysis

The essence of aromaticity is the delocalization of electrons, and EDDB, proposed by
Szczepanik and co-workers in 2014 [71], exhibits an advantage in evaluating the delocalized
electrons quantitatively. It can be used to efficiently achieve the separation of σ and π con-
tributions, and provides contribution of delocalized electrons from the specific fragments.
The π electrons of the 8MR play an important role in aromaticity and the EDDB method is
powerful in quantifying the delocalized electrons. Therefore, the π-EDDB_F method for
the complex 8MR fragment was used in the aromaticity analysis (Figure 4). For a given
system, the relatively larger EDDB values indicate more delocalized electrons and stronger
aromaticity. The π-EDDB_F values of the radical cations (1-rad.1, 2-rad.1 and 3-rad.1)
are relatively large (ranging from 4.83 e to 5.31 e), indicating their aromaticity, whereas
among the radicals formed by reduction, only the corresponding radical of compound 2,
within adaptive aromaticity, has a large π-EDDB_F value (5.87 e) and shows its aromaticity.
According to the π-EDDB values of the 8MR, the results are in line with that from NICS and
AICD analyses. In addition, we selected the key natural orbitals for bond delocalization
(NOBDs) with π-contributions and provided them in Figures S16–S18.
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3.4. Aromaticity Analyses Based on Electron Localization Function

For a better determination of aromaticity, we also manipulated topological analysis
of electron localization function (ELF) which was used to assess the (anti-)aromaticity of
systems by linking the properties of molecular electronic structure. It is worth noting
that ELFπ (π-contribution to ELF) performs well in measuring (anti)aromaticity. A small
span of ELFπ bifurcation values (∆BV(ELFπ)) for C-C bonds is an indicator of aromaticity,
the ∆BV(ELFπ)s (range from 0.232 to 0.334, as shown in Figure 1) in the radicals 1-rad.1,
2-rad.1 and 3-rad.1 are close to that of the compounds (0.108–0.235), which were proved
to be aromatic by our previous work [31], indicating the better electron delocalization
and their aromaticity. In addition, the ∆BV(ELFπ) of the radical 2-rad.2 is small (0.142),
indicating its aromaticity. In contrast, the ∆BV(ELFπ) in antiaromatic compound 1-T1

(0.721) is more than six times of that in aromatic 1-S0 (0.108), consisting with our previous
work (Figure S1) [31]. The intermediate ∆BV(ELFπ) (0.476–0.553) of 3-T1, 1-rad.2 and
3-rad.2 indicate their non-aromaticity. All these results are in line with those from NICS,
AICD, and EDDB analyses.

3.5. Aromaticity Analyses Based on Frontier Molecular Orbitals and Spin Populations

To explore the origin for the aromaticity of the corresponding radicals from compound
2, obtained by oxidation or reduction, we analyzed their frontier molecular orbitals. As
shown in Figure 5, the highest singly occupied molecular orbitals (HSOMO) of the radical
cations (1-rad.1, 2-rad.1 and 3-rad.1) obtained by oxidation are extremely similar to the
HSOMO-1 of the parent complexes in the T1 state. In the case of compound 2, the HSOMO
of 2-rad.1 exhibits an out-of-plane orientation. When compared to the HSOMO-1 of 2-T1,
it becomes evident that this out-of-plane orientation contributes more significantly to its
aromaticity. As for radical cations 1-rad.1 and 3-rad.1, they will not be affected by the contri-
bution to out-of-plane antiaromaticity, thus they could keep their aromaticity. Meanwhile,
the HSOMO of 1-rad.1 shows a slight clockwise current, which indicates that it contributes
a slight contribution for the aromaticity. It is interesting that the radicals obtained by
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reduction perform different aromaticity and only the radical 2-rad.2 keeps aromaticity
whereas the radical anions (1-rad.2 and 3-rad.2) become nonaromatic. Focusing on the
radicals 1-rad.2, 2-rad.2 and 3-rad.2, their HSOMOs are similar to the HSOMOs of parent
complexes in the T1 state. For complex 2, the HSOMO of the triplet (T1) state is oriented
in-plane, thereby allowing us to disregard its contribution to out-of-plane aromaticity, in
line with our previous work [31]. Similarly, in complex 2-rad.2, the HSOMO also exhibits
an in-plane orientation, and this orientation does not reverse its aromaticity. However,
the aromaticity change in radical anions 1-rad.2 and 3-rad.2 could contribute to the newly
generated significantly paratropic ring current of HSOMOs. All these qualitative analyses
are also supported by AICD calculations on these key frontier molecular orbitals (Figure 5).
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character, the “π orbitals” we discussed in this study only refer to those anti-symmetric to the
molecular plane. The isovalues for MO and AICD surfaces are 0.02 and 0.024 a.u., respectively.
High-resolution plots are provided in the Supporting Information (Figures S19–S33).

The studies have demonstrated that the localized spin density on metal center is
beneficial to achieve aromaticity for complexes [31,35,36]. In line with the previous findings,
aromatic systems (compounds 1-rad.1, 2-T1, 2-rad.1, 2-rad.2 and 3-rad.1) display localized
spin density on the metal center, whereas other anti(non-)aromatic complexes have spin
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density distributed mainly on the carbon rings. As shown in Figure 6, the spin populations
on the osmium center of complexes 1-rad.1, 2-T1, 2-rad.1, 2-rad.2 and 3-rad.1 are large
(45.12–68.41%). In contrast, the spin population on the seven carbon atoms of the eight-
membered ring (R7C) in these complexes are relatively small. Conversely, the atomic spin
population in the nonaromatic radical anions 1-rad.2 and 3-rad.2 are mostly distributed on
the carbon atoms rather than the metal center, similar to the 1-T1 and 3-T1. In summary,
the spin density contributed on the metal center plays a crucial rule in their aromaticity.
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corresponding radicals.

4. Conclusions
We performed DFT calculations on the osmapentalyne, as well as osmapentalene

complexes and their corresponding radicals. It was found that the corresponding radicals
of adaptive aromatic complex 2 retain aromaticity regardless of the radicals formed by
oxidation or reduction, supported by various aromaticity indices including ∆BL, NICS,
AICD, EDDB and ELF. It is necessary to try as many aromatic indices as possible because
using a single index is unilateral and may lead to inconsistent judgements [82,83]. The
localization of spin electrons on the metal center could be regarded as one of the key reasons
to achieve aromaticity. All these findings not only deepen the understanding of the concept
of aromaticity, but also help the development of radical chemistry.
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complexes 1–3 in S0 and T1 states. The bond lengths (Å, red) and BV(ELFπ)s (blue) are annotated
along the bonds. Values before and after the slash “/” correspond to ∆BL and ∆BV(ELFπ) values,
respectively. (b) AICD plots of complexes 1–3 in the S0 and T1 states. The isovalue for the surfaces
is 0.030 a.u. (c) NICS(1)zz grids for metallacyclopropene rings in complexes 1–3 in the S0 and T1

states, respectively. NICS(1)zz values (ppm) are provided on the bottom of each graph; Figure S2:
Key MOs of complexes 1–3; Figure S3: ELFπ domains at the isovalue of 0.70; Figure S4: AICD plot
of 1-S0; Figure S5: AICD plot of 1-T1; Figure S6: AICD plot of 1-rad.1; Figure S7: AICD plot of
1-rad.2; Figure S8: AICD plot of 2-S0; Figure S9: AICD plot of 2-T1; Figure S10: AICD plot of 2-rad.1;
Figure S11: AICD plot of 2-rad.2; Figure S12: AICD plot of 3-S0; Figure S13: AICD plot of 3-T1;
Figure S14: AICD plot of 3-rad.1; Figure S15: AICD plot of 3-rad.2; Figure S16: Key natural orbitals for
bond delocalization (NOBDs) of complex 1; Figure S17: Key natural orbitals for bond delocalization
(NOBDs) of complex 2; Figure S18: Key natural orbitals for bond delocalization (NOBDs) of complex 3;
Figure S19: AICD plot of the HOMO of 1-S0; Figure S20: AICD plot of the HSOMO of 1-T1; Figure S21:
AICD plot of the HSOMO-1 of 1-T1; Figure S22: AICD plot of the HSOMO of 1-rad.1; Figure S23:
AICD plot of the HSOMO of 1-rad.2; Figure S24: AICD plot of the HOMO of 2-S0; Figure S25: AICD
plot of the HSOMO of 2-T1; Figure S26: AICD plot of the HSOMO-1 of 2-T1; Figure S27: AICD plot
of the HSOMO of 2-rad.1; Figure S28: AICD plot of the HSOMO of 2-rad.2; Figure S29: AICD plot
of the HOMO of 3-S0; Figure S30: AICD plot of the HSOMO of 3-T1; Figure S31: AICD plot of the
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HSOMO-1 of 3-T1; Figure S32: AICD plot of the HSOMO of 3-rad.1; Figure S33: AICD plot of the
HSOMO of 3-rad.2; Cartesian coordinates of all the species.
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